OpenCV——使用ROI进行图像切割
ROI(region of interest)——感兴趣区域。
1.用途
这个区域是图像分析所关注的重点。圈定这个区域,以便进行进一步的处理。而且,使用ROI指定
想读入的目标,可以减少处理时间,增加精度,给图像处理带来不小的便利。
2.定义ROI方法
- 使用表示矩阵区域的Rect。
它指定矩阵的左上角坐标(构造函数的前两个参数)和矩阵的长宽(构造函数的后两个参数)以定义一个矩阵区域。
// 定义一个Mat类型并给定其设定的区域
Mat imageROI;
// 方法一
imageROI = image(Rect(, , logo.cols, logo.rows));
- 指定感兴趣行或列的范围(Range)。
Range是指从起索引到终止索引(不包括终止索引)的一连串连续序列。cRange可以用来定义Range。如果使用Range来定义ROI,那么前例中定义ROI的代码可以重写为:
// 方法二
imageROI = image( Range(, +logoImage.rows),
Range(200, 200+logoImage.cols));
3.切割具体步骤
- 将要切割下的图像区域局部设置为ROI
void cvSetImageROI(IplImage* image,CvRect rect);
- 创建一个与切割图像大小相同的新图像
IplImage* cvCreateImage( CvSize size, int depth, int channels );
IPL_DEPTH_8U | 无符号8位整型 |
IPL_DEPTH_8S | 有符号8位整型 |
IPL_DEPTH_16U | 无符号16位整型 |
IPL_DEPTH_16S | 有符号16位整型 |
IPL_DEPTH_32F | 单精度浮点数 |
IPL_DEPTH_64F | 双精度浮点数 |
- 将原图像复制到新图像中
void cvCopy( const CvArr* src, CvArr* dst, const CvArr* mask=NULL );
操作掩码是8比特单通道的数组,它指定了输出数组中被改变的元素。函数cvCopy从输入数组中复制选定的成分到输出数组:
如果mask(I)!=0,则dst(I)=src(I)。
如果输入输出数组中的一个是IplImage类型的话,其ROI和COI将被使用。输入输出数组必须是同样的类型、维数和大小。函数也可以用来复制散列数组(这种情况下不支持mask)。
- 释放ROI区域
cvResetIamgeROI(src);
4.实例
如何利用ROI将一幅图加到另一幅图的指定位置。
通过一个图像掩码,直接将插入处的像素设置为插入图像的像素值,这样效果会很逼真。
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <iostream> using namespace cv;
using namespace std; bool ROI_AddImage();
bool LinearBlending();
bool ROI_LinearBlending();
void ShowHelpText(); int main( )
{
system("color 6F"); if(ROI_AddImage( )&& LinearBlending( )&&ROI_LinearBlending( ))
{
cout<<endl<<"\n运行成功,得出了需要的图像";
} waitKey();
return ;
} //----------------------------------【ROI_AddImage( )函数】----------------------------------
// 函数名:ROI_AddImage()
// 描述:利用感兴趣区域ROI实现图像叠加
//----------------------------------------------------------------------------------------------
bool ROI_AddImage()
{ // 【1】读入图像
Mat srcImage1= imread("dota_pa.jpg");
Mat logoImage= imread("dota_logo.jpg");
if( !srcImage1.data ) { printf("读取srcImage1错误~! \n"); return false; }
if( !logoImage.data ) { printf("读取logoImage错误~! \n"); return false; } // 【2】定义一个Mat类型并给其设定ROI区域
Mat imageROI= srcImage1(Rect(,,logoImage.cols,logoImage.rows)); // 【3】加载掩模(必须是灰度图)
Mat mask= imread("dota_logo.jpg",); //【4】将掩膜拷贝到ROI
logoImage.copyTo(imageROI,mask); // 【5】显示结果
namedWindow("<1>利用ROI实现图像叠加示例窗口");
imshow("<1>利用ROI实现图像叠加示例窗口",srcImage1); return true;
} //---------------------------------【LinearBlending()函数】-------------------------------------
// 函数名:LinearBlending()
// 描述:利用cv::addWeighted()函数实现图像线性混合
//--------------------------------------------------------------------------------------------
bool LinearBlending()
{
//【0】定义一些局部变量
double alphaValue = 0.5;
double betaValue;
Mat srcImage2, srcImage3, dstImage; // 【1】读取图像 ( 两幅图片需为同样的类型和尺寸 )
srcImage2 = imread("mogu.jpg");
srcImage3 = imread("rain.jpg"); if( !srcImage2.data ) { printf("读取srcImage2错误! \n"); return false; }
if( !srcImage3.data ) { printf("读取srcImage3错误! \n"); return false; } // 【2】进行图像混合加权操作
betaValue = ( 1.0 - alphaValue );
addWeighted( srcImage2, alphaValue, srcImage3, betaValue, 0.0, dstImage); // 【3】显示原图窗口
imshow( "<2>线性混合示例窗口【原图】", srcImage2 );
imshow( "<3>线性混合示例窗口【效果图】", dstImage ); return true; } //---------------------------------【ROI_LinearBlending()】-------------------------------------
// 函数名:ROI_LinearBlending()
// 描述:线性混合实现函数,指定区域线性图像混合.利用cv::addWeighted()函数结合定义
// 感兴趣区域ROI,实现自定义区域的线性混合
//--------------------------------------------------------------------------------------------
bool ROI_LinearBlending()
{ //【1】读取图像
Mat srcImage4= imread("dota_pa.jpg",);
Mat logoImage= imread("dota_logo.jpg"); if( !srcImage4.data ) { printf("读取srcImage4错误~! \n"); return false; }
if( !logoImage.data ) { printf("读取logoImage错误~! \n"); return false; } //【2】定义一个Mat类型并给其设定ROI区域
Mat imageROI;
//方法一
imageROI= srcImage4(Rect(,,logoImage.cols,logoImage.rows));
//方法二
//imageROI= srcImage4(Range(250,250+logoImage.rows),Range(200,200+logoImage.cols)); //【3】将logo加到原图上
addWeighted(imageROI,0.5,logoImage,0.3,.,imageROI); //【4】显示结果
imshow("<4>区域线性图像混合示例窗口",srcImage4); return true;
}
参考:《OpenCV3编程入门》 毛星云 著
OpenCV——使用ROI进行图像切割的更多相关文章
- opencv中的meanshift图像切割
Meanshift(均值漂移)是一种在一组数据的密度分布中寻找局部极值的稳定的方法.Meanshift不仅能够用于图像滤波,视频跟踪,还能够用于图像切割. 通过给出一组多维数据点,其维数是(x,y,r ...
- opencv笔记2:图像ROI
time:2015年 10月 03日 星期六 12:03:45 CST # opencv笔记2:图像ROI ROI ROI意思是Region Of Interests,感兴趣区域,是一个图中的一个子区 ...
- opencv分水岭算法对图像进行切割
先看效果 说明 使用分水岭算法对图像进行切割,设置一个标记图像能达到比較好的效果,还能防止过度切割. 1.这里首先对阈值化的二值图像进行腐蚀,去掉小的白色区域,得到图像的前景区域.并对前景区域用255 ...
- opencv 3 core组件进阶(2 ROI区域图像叠加&图像混合;分离颜色通道、多通道图像混合;图像对比度,亮度值调整)
ROI区域图像叠加&图像混合 #include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp&g ...
- Opencv利用ROI将一张图片叠加到另一幅图像的指定位置
机器配置为:VS2013+opencv2.4.13+Win-64bit.===========================分割线========================本节将利用ROI将一 ...
- 学习 opencv---(3) ROI 区域图像叠加&初级图像混合
在这篇文章里,我们一起学习了在OpenCV中如何定义感兴趣区域ROI,如何使用addWeighted函数进行图像混合操作,以及将ROI和addWeighted函数结合起来使用,对指定区域进行图像混合操 ...
- opencv——设置ROI区域
#include "stdafx.h" #include<opencv2\opencv.hpp> #include<opencv\cv.h> #includ ...
- 图像切割—基于图的图像切割(Graph-Based Image Segmentation)
图像切割-基于图的图像切割(Graph-Based Image Segmentation) Reference: Efficient Graph-Based Image Segmentation ...
- OpenCV 第二课 认识图像的存储结构
OpenCV 第二课 认识图像的存储结构 Mat Mat 类包含两部分,矩阵头和矩阵体.矩阵头包含矩阵的大小,存储方式和矩阵体存储空间的指针.因此,Mat中矩阵头的大小是固定的,矩阵体大小是不定的. ...
随机推荐
- POJ 1743 - Musical Theme 最长不重叠重复子串
题意: 给出一列数据,问你其中重复的最长连续子串的长度 但是有要求: 1. 长度至少为 5 . 2. 两串可以不相等,但两串每个对应位置的数字相减差值固定 (即 ...
- 宏定义中使用do{}while(0)的好处 (转载)
宏定义中使用do{}while(0)的好处 #define MACRO_NAME(para) do{macro content}while(0) 的格式,总结了以下几个原因: 1,空的宏定 ...
- C#数组的指定位置复制函数
1. // 源数组 - 起始位置 -目的数组 - 起始位置 - 长度 System.Array.Copy(mcu_data, 2, read_mcu_data_whole, 0, mcu_data.L ...
- CI框架uri去掉index.php
CI框架的入口是index.php,所以url实际上要多出一个index.php,非常不美观.我使用的是apache服务器,要开启mod_rewrite服务才可以. sudo a2enmod rewr ...
- Python核心编程(第九章)--文件和输入输出
文件内建函数: open()函数提供了初始化输入/输出操作的通用接口 open()基本语法:file_object = open(filename,access_mode='r',buffering= ...
- 添加多盟SDK 库函数
- C语言--位运算符
一.位运算符 1.按位与:& 1> 功能 * 只有对应的两个二进制位为1时,结果位才为1,否则为0 * 举例:10用二进制表示为1010, 7用二进制表示为0111.对两个数值进行&a ...
- 在Android模拟器中经常出现以下错误 timeout Launch canceled!
Failed to install MainActivity.apk on device 'emulator-5554': timeoutLaunch canceled! 解决方法: window-& ...
- BZOJ 2007 海拔
http://www.lydsy.com/JudgeOnline/problem.php?id=2007 思路: 显然海拔是一片0,另一片1,答案就是01的分界线的流量. 本题中的图是平面图,所以求最 ...
- XML Schema <第三篇>
验证XML文档是否符合议定的XML结构有两种方法,分别是DTD模式与XML Schema.本文主要介绍XML Schema. 一.XML Schema的优点 XML Schema基于XML,没有专门的 ...