题目

1385: [Baltic2000]Division expression

Time Limit: 5 Sec  Memory Limit: 64 MB

Description

除法表达式有如下的形式: X1/X2/X3.../Xk 其中Xi是正整数且Xi<=1000000000(1<=i<=k,K<=10000) 除法表达式应当按照从左到右的顺序求,例如表达式1/2/1/2的值为1/4.但可以在表达式中国入括号来改变计算顺序,例如(1/2)/(1/2)的值为1.现给出一个除法表达式E,求是告诉是否可以通过增加括号来使其为E',E'为整数

Input

先给出一个数字D,代表有D组数据. 每组数据先给出一个数字N,代表这组数据将有N个数。 接下来有N个数

Output

如果能使得表达式的值为一个整数,则输出YES.否则为NO

Sample Input

2
4
1
2
1
2
3
1
2
3

Sample Output

YES
NO

题解

这道题目我们可以知道x2无论如何都是分母,而其他数字都可以通过括号转化为分子,所以我们一直除就好了,知道x2为1就好辣!

代码

 #include<iostream>
#include<cstdio>
using namespace std;
int gcd(int a,int b){return b==?a:gcd(b,a%b);}
int T,t,n,a[];
int main(){
scanf("%d",&T);
while(T--){
scanf("%d%d%d",&n,&a[],&t);
for(int i=;i<=n-;i++)
scanf("%d",&a[i+]);
for(int i=;i<n;i++){
t/=gcd(t,a[i]);
if(t==){printf("YES\n");break;}
}
if(t!=)printf("NO\n");
}
return ;
}

BZOJ 1385: [Baltic2000]Division expression的更多相关文章

  1. bzoj 1385: [Baltic2000]Division expression【脑洞】

    加括号再去括号就是除变加,显然尽可能多的除变加是最优的,然后发现唯一不能变成乘数的是第二个数,所以把其他数乘起来mod第二个数,如果是0就是YES,否则说明最后不能除尽,就是NO #include&l ...

  2. 【BZOJ】1385 [Baltic2000]Division expression

    [算法]欧几里德算法 [题解]紫书原题 #include<cstdio> #include<algorithm> using namespace std; ; int T,t, ...

  3. bzoj1385: [Baltic2000]Division expression

    欧几里得算法.可以发现规律,a[2]作为分母,其他作为分子,必定是最好的选择.判断是否为整数即可. #include<cstdio> #include<cstring> #in ...

  4. [BZOJ1385] [Baltic2000] Division expression (数学)

    Description 除法表达式有如下的形式: X1/X2/X3.../Xk 其中Xi是正整数且Xi<=1000000000(1<=i<=k,K<=10000) 除法表达式应 ...

  5. 【BZOJ】【1385】【Baltic2000】Division expression

    欧几里得算法 普通的求个gcd即可……思路题 因为要求尽量是整数……所以 $\frac{x_1}{x_2*x_3*x_4*....*x_n}$是最大的结果了,因为$x_2$必须为分母,$x_1$必须为 ...

  6. 「BZOJ1385」「Baltic2000」Division expression 解题报告

    Division expression Description 除法表达式有如下的形式: \(X_1/X_2/X_3.../X_k\) 其中Xi是正整数且\(X_i \le 1000000000(1 ...

  7. [bzoj1385]Division expression

    容易发现a2一定是分母,且容易做到其余都是分子,因此相当于判定a2能否整除a1*a3*--*an,不断让a2除以其与其他数的gcd即可(注意特判n=1) 1 #include<bits/stdc ...

  8. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  9. interpreter(解释器模式)

    一.引子 其实没有什么好的例子引入解释器模式,因为它描述了如何构成一个简单的语言解释器,主要应用在使用面向对象语言开发编译器中:在实际应用中,我们可能很少碰到去构造一个语言的文法的情况. 虽然你几乎用 ...

随机推荐

  1. UVA1471( LIS变形)

    这是LIS的变形,题意是求一个序列中去掉某个连续的序列后,能得到的最长连续递增序列的长度. 用DP的解法是:吧这个序列用数组a来记录,再分别用两个数组f记录以i结尾的最长连续递增序列的长度,g[i]记 ...

  2. BZOJ 3916: [Baltic2014]friends( hash )

    字符串哈希..然后枚举每一位+各种判断就行了 ----------------------------------------------------------------------------- ...

  3. C++对象模型--C++对象模型

    何为C++对象模型? 部分: 1       语言中直接支持面向对象程序设计的部分 2       对于各种支持的底层实现机制 语言中直接支持面向对象程序设计的部分,如构造函数.析构函数.虚函数.继承 ...

  4. 第一讲 一个简单的Qt程序分析

    本文概要:通过一个简单的Qt程序来介绍Qt程序编写的基本框架与一些Qt程序中常见的概念 #include <QApplication> #include <QPushButton&g ...

  5. HDU 4716 A Computer Graphics Problem

    A Computer Graphics Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (J ...

  6. servlet response 中文乱码

    先,response返回有两种,一种是字节流outputstream,一种是字符流printwrite. 申明:这里为了方便起见,所有输出都统一用UTF-8编码. 先说字节流,要输出“中国" ...

  7. Ext JS学习第十天 Ext基础之 扩展原生的javascript对象(二)

    此文来记录学习笔记: 今天继续说Ext.Array,Ext.Function,Ext.Date,Ext.Error ------------------------------------------ ...

  8. wpf全局异常

    在App.xaml文件中 添加DispatcherUnhandledExceptionEventArgs 新增对应事件

  9. C# Code Snip

    1.Tryf + TAB+TAB try { } finally { } 2.Prop+Tab+Tab public int MyProperty { get; set; } 3. #region + ...

  10. 基于表单的身份验证(FBA)

    https://technet.microsoft.com/zh-cn/library/ee806890(office.15).aspx http://www.tuicool.com/articles ...