dp[x][y]表示以x为根的子树要变成有y个点..最少需要减去的边树... 最终ans=max(dp[i][P]+t)  < i=(1,n) , t = i是否为整棵树的根 >

更新的时候分为两种情况..一种是要从其这个孩子转移过来...枚举做01背包..更新出每个状态的最小值..或者说直接砍掉这个孩子..那么只需将所有的状态多加个砍边...

这里的枚举做01背包..意思是由于叶子节点要放多少进去不确定..叶子节点要放的大小以及本节点的空间都在枚举更新...这种概念就是泛化背包..本质上是01背包.做多次01背包

注意到枚举空间的顺序.这样能保证更新的时候不出现混乱....

Program:

#include<iostream>
#include<stdio.h>
#include<string.h>
#include<set>
#include<ctime>
#include<algorithm>
#include<queue>
#include<cmath>
#include<map>
#define oo 100000007
#define ll long long
#define pi acos(-1.0)
#define MAXN 155
using namespace std;
vector<int> Tree[MAXN];
int dp[MAXN][MAXN],N,P,ans;
bool root[MAXN];
int dfs(int x)
{
int i,j,y,m=Tree[x].size(),num=1,t,update;
for (i=0;i<=P;i++) dp[x][i]=oo;
dp[x][1]=0;
for (i=0;i<m;i++)
{
y=Tree[x][i];
num+=dfs(y);
for (t=P;t>=1;t--)
{
update=dp[x][t]+1;
for (j=1;j<=t;j++)
update=min(update,dp[x][t-j]+dp[y][j]);
dp[x][t]=update;
} //泛化背包转移
}
t=0;
if (!root[x]) t++;
if (dp[x][P]!=-1) ans=min(dp[x][P]+t,ans);
return num;
}
int main()
{
int i;
while (~scanf("%d%d",&N,&P))
{
for (i=1;i<=N;i++) Tree[i].clear();
memset(root,true,sizeof(root));
for (i=1;i<N;i++)
{
int x,y;
scanf("%d%d",&x,&y);
Tree[x].push_back(y);
root[y]=false;
}
for (i=1;i<=N;i++)
if (root[i]) break;
ans=oo;
dfs(i);
printf("%d\n",ans);
}
return 0;
}

POJ 1947 - Rebuilding Roads 树型DP(泛化背包转移)..的更多相关文章

  1. POJ 1155 - TELE 树型DP(泛化背包转移)..

    dp[x][y]代表以x为根的子树..连接了y个终端用户(叶子)..所能获得的最大收益... dp[x][ ]可以看成当根为x时..有个背包空间为0~m...每个空间上记录了到到达这个空间的最大收益. ...

  2. POJ 1947 Rebuilding Roads (树dp + 背包思想)

    题目链接:http://poj.org/problem?id=1947 一共有n个节点,要求减去最少的边,行号剩下p个节点.问你去掉的最少边数. dp[u][j]表示u为子树根,且得到j个节点最少减去 ...

  3. POJ 1947 Rebuilding Roads(树形DP)

    题目链接 题意 : 给你一棵树,问你至少断掉几条边能够得到有p个点的子树. 思路 : dp[i][j]代表的是以i为根的子树有j个节点.dp[u][i] = dp[u][j]+dp[son][i-j] ...

  4. POJ 1947 Rebuilding Roads (树形DP)

    题意:给一棵树,在树中删除一些边,使得有一个连通块刚好为p个节点,问最少需要删除多少条边? 思路: 因为任一条边都可能需要被删除,独立出来的具有p个节点的连通块可能在任意一处地方.先从根开始DFS,然 ...

  5. POJ 1947 Rebuilding Roads 树形DP

    Rebuilding Roads   Description The cows have reconstructed Farmer John's farm, with its N barns (1 & ...

  6. POJ 1947 Rebuilding Roads 树形dp 难度:2

    Rebuilding Roads Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 9105   Accepted: 4122 ...

  7. DP Intro - poj 1947 Rebuilding Roads(树形DP)

    版权声明:本文为博主原创文章,未经博主允许不得转载. Rebuilding Roads Time Limit: 1000MS   Memory Limit: 30000K Total Submissi ...

  8. POJ题目1947 Rebuilding Roads(树形dp)

    Rebuilding Roads Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 9957   Accepted: 4537 ...

  9. [poj 1947] Rebuilding Roads 树形DP

    Rebuilding Roads Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 10653 Accepted: 4884 Des ...

随机推荐

  1. ios7高级

    1.实现控制器和视图. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1     ...

  2. css 3种清除浮动方法

    <!DOCTYPE html><html>    <head>        <meta charset="UTF-8">      ...

  3. 覆盖与重载与隐藏——SAP电面(3)

    参考:http://man.chinaunix.net/develop/c&c++/c/c.htm#_Toc520634042 8.2.1 重载与覆盖 成员函数被重载的特征: (1)相同的范围 ...

  4. java代理课程测试 spring AOP代理简单测试

    jjava加强课程测试代码 反射. 代理 .泛型.beanUtils等 项目源码下载:http://download.csdn.net/detail/liangrui1988/6568169 热身运动 ...

  5. hdu 2815 Mod Tree 高次方程,n不为素数

    Accepted 406MS 8576K 2379 B C++/** 这里加了一点限制,,大体还是一样的,, **/ #include <iostream> #include <cs ...

  6. 高质量程序设计指南C/C++语言——有了malloc/free为什么还要new/delete?

  7. oracle复制表数据,复制表结构

    1.不同用户之间的表数据复制 2.同用户表之间的数据复制 3.B.x中个别字段转移到B.y的相同字段 4.只复制表结构 加入了一个永远不可能成立的条件1=2,则此时表示的是只复制表结构,但是不复制表内 ...

  8. discuz_style_default.xml修改

    首先我们需要在template/文件夹下新建一个yourstyle文件夹放置模板文件,然后复制default下的discuz_style_default.xml,重命名为discuz_style_你的 ...

  9. HDU 1157 Who's in the Middle

    #include <cstdio> #include <algorithm> using namespace std; int main() { int n; while(sc ...

  10. jQuery.merge 源码阅读

    jQuery.merge(first,second) 概述 合并两个数组 返回的结果会修改第一个数组的内容——第一个数组的元素后面跟着第二个数组的元素. 参数 first:第一个待处理数组,会改变其中 ...