1086 Tree Traversals Again(25 分)

An inorder binary tree traversal can be implemented in a non-recursive way with a stack. For example, suppose that when a 6-node binary tree (with the keys numbered from 1 to 6) is traversed, the stack operations are: push(1); push(2); push(3); pop(); pop(); push(4); pop(); pop(); push(5); push(6); pop(); pop(). Then a unique binary tree (shown in Figure 1) can be generated from this sequence of operations. Your task is to give the postorder traversal sequence of this tree.


Figure 1

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (≤30) which is the total number of nodes in a tree (and hence the nodes are numbered from 1 to N). Then 2N lines follow, each describes a stack operation in the format: "Push X" where X is the index of the node being pushed onto the stack; or "Pop" meaning to pop one node from the stack.

Output Specification:

For each test case, print the postorder traversal sequence of the corresponding tree in one line. A solution is guaranteed to exist. All the numbers must be separated by exactly one space, and there must be no extra space at the end of the line.

Sample Input:

6
Push 1
Push 2
Push 3
Pop
Pop
Push 4
Pop
Pop
Push 5
Push 6
Pop
Pop

Sample Output:

3 4 2 6 5 1

题目大意:二叉树的中根遍历,可以通过栈来实现,那么现在给出一棵二叉树的中根遍历操作,要求输出后根遍历结果。

//完全可以通过输入来确定这棵二叉树的中根遍历,即已知中根遍历求后根遍历。但是我不会啊。

代码转自:https://www.liuchuo.net/archives/2168

#include <cstdio>
#include <vector>
#include <stack>
#include <cstring>
using namespace std;
vector<int> pre, in, post,value;
void postorder(int root, int start, int end) {
if (start > end) return;
int i = start;
while (i < end && in[i] != pre[root]) {//中序遍历序列中存的节点的id,唯一的!
i++;
printf("%d %d\n" ,in[i],pre[root]);
}
postorder(root + , start, i - );
//左子树共有i-start+1个节点。
postorder(root + + i - start, i + , end);
post.push_back(pre[root]);
}
int main() {
int n;
scanf("%d", &n);
char str[];
stack<int> s;
int key=;
while (~scanf("%s", str)) {
if (strlen(str) == ) {
int num;
scanf("%d", &num);
value.push_back(num);
pre.push_back(key);//对应num有一个序号,从0开始。 s.push(key++);
} else {
in.push_back(s.top());//现在存了中序遍历
//存的是id对应的序号(为了防止重复呢。)
s.pop();
}
} postorder(, , n - );
printf("\n");
printf("%d", value[post[]]);
for (int i = ; i < n; i++)
printf(" %d",value[post[i]]);
return ;
}

//这个代码简直太难了,看了好几遍都理解不了那个中序转后序的,气死了。

//这个明天还要搜一下别的题解,简直气死我了。

//更要重点掌握一套,二叉树的各种访问序列转换方法。

2018-11-17更——————

我的AC:

#include <iostream>
#include <cstdio>
#include <vector>
#include<stack> using namespace std;
vector<int> in,pre,post;
void postOrder(int inL,int inR,int preL,int preR){
if(inL>inR)return ;
// int i=0;//标识中根遍历中的根节点下标
int i=;
while(in[i]!=pre[preL])i++;
//遍历左右子树
postOrder(inL,i-,preL+,preR+i-inL);
postOrder(i+,inR,preL+i-inL+,preR);
post.push_back(in[i]);
}
int main()
{
//push的顺序就是前序,弹出的顺序就是中序。
int n,id;
cin>>n;
string s;
stack<int> tree;
for(int i=;i<*n;i++){
cin>>s;
if(s[]=='u'){
cin>>id;
tree.push(id);
pre.push_back(id);//前序遍历放进来。
}else{
int temp=tree.top();
tree.pop();
in.push_back(temp);
}
}
// cout<<pre.size();
postOrder(,n-,,n-);
for(int i=;i<n;i++){
cout<<post[i];
if(i!=n-)cout<<" ";
}
return ;
}

//在牛客网上通不过,说内存超限,通过率为0,因为递归层数太深?

遇到的问题:

1.postOrder函数,作为递归出口应该是in的左右去判断,如果是pre的,则不会输出结果

2.在postOrder的while循环中,i可以从0开始判断。

3.柳神的代码考虑了key不唯一的情况,但是我没考虑,而且PAT上应该也没考虑,否则就不会AC了。

4.关于这个key的问题,是应该考虑一下不唯一的情况的,因为题目里并没有说。

PAT 1086 Tree Traversals Again[中序转后序][难]的更多相关文章

  1. PAT 1086 Tree Traversals Again

    PAT 1086 Tree Traversals Again 题目: An inorder binary tree traversal can be implemented in a non-recu ...

  2. PAT 甲级 1086 Tree Traversals Again (25分)(先序中序链表建树,求后序)***重点复习

    1086 Tree Traversals Again (25分)   An inorder binary tree traversal can be implemented in a non-recu ...

  3. 1086 Tree Traversals Again——PAT甲级真题

    1086 Tree Traversals Again An inorder binary tree traversal can be implemented in a non-recursive wa ...

  4. PAT Advanced 1086 Tree Traversals Again (25) [树的遍历]

    题目 An inorder binary tree traversal can be implemented in a non-recursive way with a stack. For exam ...

  5. PAT 1020. Tree Traversals

    PAT 1020. Tree Traversals Suppose that all the keys in a binary tree are distinct positive integers. ...

  6. [LeetCode] Construct Binary Tree from Inorder and Postorder Traversal 由中序和后序遍历建立二叉树

    Given inorder and postorder traversal of a tree, construct the binary tree. Note: You may assume tha ...

  7. LeetCode 106. Construct Binary Tree from Inorder and Postorder Traversal 由中序和后序遍历建立二叉树 C++

    Given inorder and postorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  8. 【构建二叉树】02根据中序和后序序列构造二叉树【Construct Binary Tree from Inorder and Postorder Traversal】

    我们都知道,已知中序和后序的序列是可以唯一确定一个二叉树的. 初始化时候二叉树为:================== 中序遍历序列,           ======O=========== 后序遍 ...

  9. PAT A1020 Tree Traversals(25)

    题目描述 Suppose that all the keys in a binary tree are distinct positive integers. Given the postorder ...

随机推荐

  1. Java 07 example

    留下两个例子作为参考, 1. 追逐小方块的例子 2. HashMap 和 Iterator 的例子 Example one: import acm.graphics.*; import acm.pro ...

  2. mongodb和redis设计原理简析

    转自:http://blog.csdn.net/yangbutao/article/details/8309539 redis:   1.NIO通信     因都在内存操作,所以逻辑的操作非常快,减少 ...

  3. latex之图表位置控制

    \begin{table}[!htbp] !-忽略“美学”标准 h-here t-top b-bottom p-page-of-its-own

  4. 【UVa】Partitioning by Palindromes(dp)

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=27&page=sh ...

  5. 学习:record用法

    详情请参考官网:http://www.erlang.org/doc/reference_manual/records.html http://www.erlang.org/doc/programmin ...

  6. 运动目标检测ViBe算法

    一.运动目标检测简介   视频中的运动目标检测这一块现在的方法实在是太多了.运动目标检测的算法依照目标与摄像机之间的关系可以分为静态背景下运动检测和动态背景下运动检测.先简单从视频中的背景类型来讨论. ...

  7. MFC 单选按钮Radio使用注意

    使用MFC Radio时遇到问题:数据交换时出现断言崩溃框 定位于: 解决方法: 1.按CTRL+D,保证同一组内的radio的tab序号是连续的: 2.同一组内,设置 radio1的属性:  gro ...

  8. C++之运算符重载

     C++ Code  12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849 ...

  9. Spring boot Junit Test单元测试

    Spring boot 1.40 JUnit 4 需要依赖包 spring-boot-starter-test.spring-test 建立class,加上如下注解,即可进行单元测试,别的帖子里说要加 ...

  10. img与特殊布局下对浏览器渲染的剖析

    补白 在内联元素中,分为替换元素和非替换元素(不了解的同学可以百度一下),非替换元素是不可以设置尺寸的,而替换元素作为特殊的内联元素,由于其自身拥有尺寸属性,所以其的尺寸是可以进行再次设置的. 此文适 ...