Machine Learning系列--判别式模型与生成式模型
监督学习的任务就是学习一个模型,应用这一模型,对给定的输入预测相应的输出。这个模型的一般形式为决策函数:
$$ Y=f(X) $$
或者条件概率分布:
$$ P(Y|X) $$
监督学习方法又可以分为生成方法(generative approach)和判别方法(discriminative approach)。所学到的模型分别称为生成模型(generative model)和判别模型(discriminative model)。
生成方法由数据学习联合概率分布P(X,Y),然后求出条件概率分布P(Y|X)作为预测的模型,即生成模型:
$$ P\left( {Y|X} \right) = \frac{{P\left( {X,Y} \right)}}{{P\left( X \right)}} $$
这样的方法之所以称为生成方法,是因为模型表示了给定输入$X$产生输出$Y$的生成关系。典型的生成模型有:朴素贝叶斯法和隐马尔可夫模型.
判别方法由数据直接学习决策函数$f(X)$或者条件概率分布$P(Y|X)$作为预测的模型,即判别模型。判别方法关心的是对给定的输入$X$,应该预测什么样的输出$Y$。典型的判别模型包括:$k$近邻法、感知机、决策树、逻辑斯谛回归模型、最大熵模型、支持向量机、提升方法和条件随机场等.
在监督学习中,生成方法和判别方法各有优缺点,适合于不同条件下的学习问题。
- 生成方法的特点:生成方法可以还原出联合概率分布$P(X,Y)$,而判别方法则不能;生成方法的学习收敛速度更快,即当样本容量增加的时候,学到的模型可以更快地收敛于真实模型;当存在隐变量时,仍可以用生成方法学习,此时判别方法就不能用。
- 判别方法的特点:判别方法直接学习的是条件概率$P(Y|X)$或决策函数$f(X)$,直接面对预测,往往学习的准确率更高;由于直接学习$P(Y|X)$或$f(X)$,可以对数据进行各种程度上的抽象、定义特征并使用特征,因此可以简化学习问题。
参考资料:
1. 李航. 《统计学习方法》
Machine Learning系列--判别式模型与生成式模型的更多相关文章
- Machine Learning系列--隐马尔可夫模型的三大问题及求解方法
本文主要介绍隐马尔可夫模型以及该模型中的三大问题的解决方法. 隐马尔可夫模型的是处理序列问题的统计学模型,描述的过程为:由隐马尔科夫链随机生成不可观测的状态随机序列,然后各个状态分别生成一个观测,从而 ...
- Machine Learning系列--TF-IDF模型的概率解释
信息检索概述 信息检索是当前应用十分广泛的一种技术,论文检索.搜索引擎都属于信息检索的范畴.通常,人们把信息检索问题抽象为:在文档集合D上,对于由关键词w[1] ... w[k]组成的查询串q,返回一 ...
- 判别式模型 vs. 生成式模型
1. 简介 生成式模型(generative model)会对\(x\)和\(y\)的联合分布\(p(x,y)\)进行建模,然后通过贝叶斯公式来求得\(p(y|x)\), 最后选取使得\(p(y|x) ...
- 产生式模型(生成式模型)与判别式模型<转载>
转自http://dongzipnf.blog.sohu.com/189983746.html 产生式模型与判别式模型 产生式模型(Generative Model)与判别式模型(Discrimiti ...
- AI 判别式模型和生成式模型
判别式模型(discriminative model) 生成式模型(generative model) 对于输入x,类别标签y:产生式模型估计它们的联合概率分布P(x,y)判别式模型估计条件概率分布P ...
- Machine Learning系列--CRF条件随机场总结
根据<统计学习方法>一书中的描述,条件随机场(conditional random field, CRF)是给定一组输入随机变量条件下另一组输出随机变量的条件概率分布模型,其特点是假设输出 ...
- Machine Learning系列--归一化方法总结
一.数据的标准化(normalization)和归一化 数据的标准化(normalization)是将数据按比例缩放,使之落入一个小的特定区间.在某些比较和评价的指标处理中经常会用到,去除数据的单位限 ...
- Machine Learning系列--L0、L1、L2范数
今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大,为了不吓到大家,我将这个五个 ...
- Machine Learning系列--EM算法理解与推导
EM算法,全称Expectation Maximization Algorithm,译作最大期望化算法或期望最大算法,是机器学习十大算法之一,吴军博士在<数学之美>书中称其为“上帝视角”算 ...
随机推荐
- Java 读取Excel2007 jar包冲突的问题(org.apache.poi.POIXMLException: java.lang.reflect.InvocationTargetException)
1.jar包冲突报错问题 2.使用的jar包,以及重复jar包 3.删除重复jar包
- (一)Quartz2.2.1 简单例子
转载至http://blog.csdn.net/a4307515/article/details/46985533 1.关键接口 Scheduler,任务调度的API:它可以用来启动或者终止任务等. ...
- java学习5-jar包的下载以及导入
1.出现未导入包的情况 ,表示当前jdk不 2.百度下载jar包 3.File. 未完待续http://blog.csdn.net/a153375250/article/details/5085104 ...
- P3932 浮游大陆的68号岛 【线段树】
P3932 浮游大陆的68号岛 有一天小妖精们又在做游戏.这个游戏是这样的. 妖精仓库的储物点可以看做在一个数轴上.每一个储物点会有一些东西,同时他们之间存在距离. 每次他们会选出一个小妖精,然后剩下 ...
- Linux内核分析2
周子轩原创作品转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 本次实验是通过分析一个简单 ...
- C++堆和栈详解(转)
一.预备知识—程序的内存分配 一个由C/C++编译的程序占用的内存分为以下几个部分 1.栈区(stack)— 由编译器自动分配释放 ,存放函数的参数值,局部变量的值等.其 操 ...
- 音视频处理之FFmpeg程序的介绍与使用20180302
一.FFMPEG程序介绍与使用 主要介绍一下ffmpeg工程包含的三个exe的使用方法. 1. FFMPEG程序介绍 1.1.下载 ffmpeg的官方网站是:http://ffmpeg.org/ 下载 ...
- Struts初探(二)
总是找不到对应的action,但别的没用到动态方法调用的都没有问题. 报异常:java.lang.reflect.InvocationTargetException - Class: com.open ...
- ROS中的CMakeLists.txt (转)
在ROS的编程过程中,如果CMakeLists.txt如果写不好,编译就很难成功.如果看不懂CMakeLists.txt那么很多错误你也不知道时什么回事.所以深入了解它是很右必要的.现在我们就来看看它 ...
- XFire搭建WebService和客户端访问程序
开发环境:myeclipse8.6+jdk1.6.0_29+tomcat6.0.37 JAX-WS搭建webservice:http://www.cnblogs.com/gavinYang/p/352 ...