Machine Learning系列--判别式模型与生成式模型
监督学习的任务就是学习一个模型,应用这一模型,对给定的输入预测相应的输出。这个模型的一般形式为决策函数:
$$ Y=f(X) $$
或者条件概率分布:
$$ P(Y|X) $$
监督学习方法又可以分为生成方法(generative approach)和判别方法(discriminative approach)。所学到的模型分别称为生成模型(generative model)和判别模型(discriminative model)。
生成方法由数据学习联合概率分布P(X,Y),然后求出条件概率分布P(Y|X)作为预测的模型,即生成模型:
$$ P\left( {Y|X} \right) = \frac{{P\left( {X,Y} \right)}}{{P\left( X \right)}} $$
这样的方法之所以称为生成方法,是因为模型表示了给定输入$X$产生输出$Y$的生成关系。典型的生成模型有:朴素贝叶斯法和隐马尔可夫模型.
判别方法由数据直接学习决策函数$f(X)$或者条件概率分布$P(Y|X)$作为预测的模型,即判别模型。判别方法关心的是对给定的输入$X$,应该预测什么样的输出$Y$。典型的判别模型包括:$k$近邻法、感知机、决策树、逻辑斯谛回归模型、最大熵模型、支持向量机、提升方法和条件随机场等.
在监督学习中,生成方法和判别方法各有优缺点,适合于不同条件下的学习问题。
- 生成方法的特点:生成方法可以还原出联合概率分布$P(X,Y)$,而判别方法则不能;生成方法的学习收敛速度更快,即当样本容量增加的时候,学到的模型可以更快地收敛于真实模型;当存在隐变量时,仍可以用生成方法学习,此时判别方法就不能用。
- 判别方法的特点:判别方法直接学习的是条件概率$P(Y|X)$或决策函数$f(X)$,直接面对预测,往往学习的准确率更高;由于直接学习$P(Y|X)$或$f(X)$,可以对数据进行各种程度上的抽象、定义特征并使用特征,因此可以简化学习问题。
参考资料:
1. 李航. 《统计学习方法》
Machine Learning系列--判别式模型与生成式模型的更多相关文章
- Machine Learning系列--隐马尔可夫模型的三大问题及求解方法
本文主要介绍隐马尔可夫模型以及该模型中的三大问题的解决方法. 隐马尔可夫模型的是处理序列问题的统计学模型,描述的过程为:由隐马尔科夫链随机生成不可观测的状态随机序列,然后各个状态分别生成一个观测,从而 ...
- Machine Learning系列--TF-IDF模型的概率解释
信息检索概述 信息检索是当前应用十分广泛的一种技术,论文检索.搜索引擎都属于信息检索的范畴.通常,人们把信息检索问题抽象为:在文档集合D上,对于由关键词w[1] ... w[k]组成的查询串q,返回一 ...
- 判别式模型 vs. 生成式模型
1. 简介 生成式模型(generative model)会对\(x\)和\(y\)的联合分布\(p(x,y)\)进行建模,然后通过贝叶斯公式来求得\(p(y|x)\), 最后选取使得\(p(y|x) ...
- 产生式模型(生成式模型)与判别式模型<转载>
转自http://dongzipnf.blog.sohu.com/189983746.html 产生式模型与判别式模型 产生式模型(Generative Model)与判别式模型(Discrimiti ...
- AI 判别式模型和生成式模型
判别式模型(discriminative model) 生成式模型(generative model) 对于输入x,类别标签y:产生式模型估计它们的联合概率分布P(x,y)判别式模型估计条件概率分布P ...
- Machine Learning系列--CRF条件随机场总结
根据<统计学习方法>一书中的描述,条件随机场(conditional random field, CRF)是给定一组输入随机变量条件下另一组输出随机变量的条件概率分布模型,其特点是假设输出 ...
- Machine Learning系列--归一化方法总结
一.数据的标准化(normalization)和归一化 数据的标准化(normalization)是将数据按比例缩放,使之落入一个小的特定区间.在某些比较和评价的指标处理中经常会用到,去除数据的单位限 ...
- Machine Learning系列--L0、L1、L2范数
今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大,为了不吓到大家,我将这个五个 ...
- Machine Learning系列--EM算法理解与推导
EM算法,全称Expectation Maximization Algorithm,译作最大期望化算法或期望最大算法,是机器学习十大算法之一,吴军博士在<数学之美>书中称其为“上帝视角”算 ...
随机推荐
- bzoj1853-大包子的幸运数字
题意 称只含有 6 和 8 的数字为幸运数字.称幸运数字的倍数为类幸运数字.求 \([l,r]\) 中有多少个类幸运数字.\(1\le l,r\le 10^{10}\) . 分析 幸运数字最多有 \( ...
- bzoj4815[CQOI2017]小Q的格子
题意 不简述题意了,简述题意之后这道题就做出来了.放个原题面. 小Q是个程序员. 作为一个年轻的程序员,小Q总是被老C欺负,老C经常把一些麻烦的任务交给小Q来处理. 每当小Q不知道如何解决时,就只好向 ...
- pyhcarm github
1.主题 介绍如何用Pycharm实打实的创建.运行.调试程序. 2.准备工作 Pycharm版本为2.7或者更高. 至少安装一个Python解释器,2.4到3.3均可 3.下载安装Pycharm 下 ...
- list+map
通常读取数据库表中的一条记录后,可以存储于Hashmap变量中:若要读取多条记录,则依次读取每个记录时,先用Hashmap变量存取,然后将Hashmap加到ArrayList变量中. 注意: 每次读取 ...
- 【明哥报错簿】之【HTTP Status 500 - Servlet.init() for servlet mvc-dispatcher threw exception】
报错:java.lang.NoClassDefFoundError: /factory/config/EmbeddedValueResolver spring或者jdk的问题,解决办法:spring3 ...
- 【Java】自动获取某表某列的最大ID数
使用场景: 当需要往数据库插入数据时,表的主键需要接着已经有的数据后面进行自增.比如已经wq_customer表里,主键为TBL_ID,如果是空表,那么插入的数据TBL_ID设置为1,如果已经有n条数 ...
- 3294 [SCOI2016]背单词
题目描述 Lweb 面对如山的英语单词,陷入了深深的沉思,”我怎么样才能快点学完,然后去玩三国杀呢?“.这时候睿智的凤老师从远处飘来,他送给了 Lweb 一本计划册和一大缸泡椒,他的计划册是长这样的: ...
- html/css/js 学习笔记 - 牛客网试卷:前端工程师能力评估
display属性 : block : CSS1 块对象的默认值.将对象强制作为块对象呈递,为对象之后添加新行 可以定义高度和宽度 none : CSS1 隐藏对象.与 visibility 属性 ...
- Bootstrap 环境安装
下载 Bootstrap 可以从 http://getbootstrap.com/ 上下载 Bootstrap 的最新版本.当点击这个链接时,将看到如下所示的网页: 您会看到两个按钮: Downloa ...
- 【BZOJ3437】小P的牧场(动态规划,斜率优化)
[BZOJ3437]小P的牧场(动态规划,斜率优化) 题面 BZOJ 题解 考虑暴力\(dp\),设\(f[i]\)表示强制在\(i\)处建立控制站的并控制\([1..i]\)的最小代价. 很显然,枚 ...