题目:http://acm.hdu.edu.cn/showproblem.php?pid=1250

思路:本题的Fibonacci数列是扩展的四阶的Fibonacci数列,用递推关系式求解即可.

题目提示,所求的Fibonacci数最多2500位,所以不能用已有的数据类型表示,可以采用数组存储数字,模拟加法.

由于没有给F(n)的n最大为多少,所以需要估计一下.经过反复测试,F(7000)约为2000位左右,如果设置数组长度为2500+1,则计算得到F(7500)的结果沾满了2500+1位(),所以我们只需要计算到n=7500即可.

在写代码的时候设置一个数组a[7500][2500+1],则a[i][j]表示待求的F(i)的i的2500+1位中的第j位.

C++代码如下:

#include<iostream>
#include<string.h>
using namespace std; #define maxn 7500//最多算到
#define len 2500 + 1 //最多2500+1位
int a[maxn][len]; int main()
{
int i,j;
for(i=1;i<maxn;i++)//所有的a[i]的每一位初始化为0
memset(a[i],0,sizeof(a[i])); a[1][len-1] = a[2][len-1] = a[3][len-1] = a[4][len-1] = 1;//F(1)F(2)F(3)F(4)都为1 for(i=5;i<maxn;i++)//从5开始
{
int c = 0;
for(j=len-1;j>=0;j--)//计算F(i)
{
c += + a[i-1][j] + a[i-2][j] + a[i-3][j] + a[i-4][j] ;
a[i][j] = c % 10;
c = c / 10;
}
} int n;
while(cin>>n)
{
for(i=0;i<len;i++)
if(a[n][i])
break;//去掉前导0
for(j=i;j<len;j++)
cout << a[n][j];
cout << endl;
}
return 0;
}

上述代码,提交无法通过,显示MLE.

上述代码中a[i]的每一个元素仅存储一位数,可以用a[i]的每一个元素存多位数,例如存4位,则2500位需要625个元素存储.所以数组a可以定义为a[7500][625].如下图:

两种存储方式的每一位都是int型的,所以第二种更节省空间,也更节省时间.采用这种方式可以避免第一种存储方式所产生的TLE或者MLE.

C++代码如下:

#include<iostream>
#include<string.h>
using namespace std; #define maxn 7500
#define len 625 //每个元素可以存 4 位,一共要存2500位,一共需要 625个数组元素.
int a[maxn][len]; int main()
{
int i,j; for(i=1;i<maxn;i++)//一些初始化工作
memset(a[i],0,sizeof(a[i]));
a[1][len-1] = a[2][len-1] = a[3][len-1] = a[4][len-1] = 1; for(i=5;i<maxn;i++)//从5开始
{
int c = 0;
for(j=len-1;j>=0;j--)//计算F(i)
{
c += (a[i-1][j] + a[i-2][j] + a[i-3][j] + a[i-4][j]);
a[i][j] = c % 10000;//进位处理:不是10,不是1000,因为9999仍然是四位数,只有到了10000才能进位
c /= 10000;
}
} int n;
while(scanf("%d",&n)!=EOF)
{
if(n<=4)
printf("%s\n","1");
else
{
int i,j;
for(i=0;i<len;i++)
if(a[n][i])
break; printf("%d",a[n][i]);//先输出第一个[四位数],这样输入默认去掉前导0.
for(j=i+1;j<len;j++)//以后输入的中间0要保留.
printf("%04d",a[n][j]);//注意此处输出格式 "%04d".
printf("\n");
}
} return 0;
}

上述代码,提交可以通过.

小结:

1.由于每个元素存储4位,所以在输出的时候,除了首位的前面的0要去掉以外,后面的位的0必须保留.

例如:输出[0023][0208][1205][0001].

错误:printf("%d",a[n][j]);输出结果:2320812051

正确:先输出[0023],前面的00去掉,即:printf("%d",a[n[0]]);再输出后面,有前导0的要保留即:printf("%04d",a[n][j]);(j>=1)输出结果:23020812050001

2.采用【一个数组元素存储4位】相当于采用了10000进制,也可以采用【一个数组元素存储8位】的方法,相当于是100000000进制,那么在输出的时候也要用printf("%08d",a[n][j]);的方法.

参考:

http://blog.csdn.net/vsooda/article/details/7985496

http://blog.csdn.net/zwj1452267376/article/details/47132583

【hdoj_1250】Hat's Fibonacci(大数)的更多相关文章

  1. HDOJ/HDU 1250 Hat's Fibonacci(大数~斐波拉契)

    Problem Description A Fibonacci sequence is calculated by adding the previous two members the sequen ...

  2. Hat's Fibonacci(大数,好)

    Hat's Fibonacci Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

  3. Hat's Fibonacci(大数加法+直接暴力)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1250 hdu1250: Hat's Fibonacci Time Limit: 2000/1000 M ...

  4. HDU 1250 Hat's Fibonacci(大数相加)

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=1250 Hat's Fibonacci Time Limit: 2000/1000 MS (Java/Ot ...

  5. HDU 1250 Hat's Fibonacci (递推、大数加法、string)

    Hat's Fibonacci Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

  6. hdu 1250 Hat's Fibonacci

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=1250 Hat's Fibonacci Description A Fibonacci sequence ...

  7. HDUOJ----1250 Hat's Fibonacci

    Hat's Fibonacci Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

  8. (二维数组 亿进制 或 滚动数组) Hat's Fibonacci hdu1250

    Hat's Fibonacci Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  9. hdu 1250 Hat's Fibonacci(java,简单,大数)

    题目 java做大数的题,真的是神器,来一道,秒一道~~~ import java.io.*; import java.util.*; import java.math.*; public class ...

随机推荐

  1. HDU.2612 Find a way (BFS)

    HDU.2612 Find a way (BFS) 题意分析 圣诞节要到了,坤神和瑞瑞这对基佬想一起去召唤师大峡谷开开车.百度地图一下,发现周围的召唤师大峡谷还不少,这对基佬纠结着,该去哪一个...坤 ...

  2. 【bzoj4559】成绩比较

    Portal -->bzoj4559 补档计划 ​  借这题补个档--拉格朗日插值 ​​  插值的话大概就是有一个\(n-1\)次多项式\(A(x)\),你只知道它在\(n\)处的点值,分别是\ ...

  3. 服务器上 tomcat 配置了 tomcat-users 但是还是 403 的问题

    默认情况下,tomcat 限制了只能本机访问 如果我们想要修改这个设置: 编辑 webapps/manager/META-INF/context.xml <!--<Valve classN ...

  4. Nginx报错 nginx: [error] open() "/usr/local/nginx-1.6.3/logs/nginx.pid" failed (2: No such file or directory)

    问题: 解决: http://www.jianshu.com/p/918eb337a206 dd

  5. java基础-关键词super与this

    转发:itbooks this是调用自己本身的构造函数,而super是调用父类中的构造函数. 这两个关键词是用在构造函数中的,这两个关键词的设计也是对封装特性的一种考虑,避免编写不必要的重复代码. c ...

  6. UVA-10779 Collectors Problem

    https://vjudge.net/problem/UVA-10779 题意:n个人,m种贴纸,每个人开始有一些贴纸 第一个人可以跟任何人交换任何贴纸 其余人只能用重复的贴纸 跟第一个人交换他们没有 ...

  7. Vue中使用vux的配置

    一.根据vux文档直接安装,无需手动配置 npm install vue-cli -g // 如果还没安装 vue init airyland/vux2 my-project // 创建名为 my-p ...

  8. 《JavaScript 实战》:实现拖放(Drag & Drop)效果

    拖放效果,也叫拖拽.拖动,学名Drag-and-drop ,是最常见的js特效之一.如果忽略很多细节,实现起来很简单,但往往细节才是难点所在.这个程序的原型是在做图片切割效果的时候做出来的,那时参考了 ...

  9. 【CodeForces】889 C. Maximum Element 排列组合+动态规划

    [题目]C. Maximum Element [题意]给定n和k,定义一个排列是好的当且仅当存在一个位置i,满足对于所有的j=[1,i-1]&&[i+1,i+k]有a[i]>a[ ...

  10. react 项目遇到的警告集锦

    1.  2.