CNN一般结构

卷积层作用:

  1. 提取不同维度的特征,组合不同维度特征,其本质是卷积核,因此,学习一个有效的总卷积核是训练卷积层主要工作

    2)寻找不同位置,不同大小的特征

  2. 根据卷积核参数计算上下层blob之前维度关系
input => conv => output:
out = (W-F+2*P)/S + 1
W:input的尺寸
F:kernel的尺寸
S:步长
P:padding的数量

非线性层

控制对不同特征特征信号所应当作出的反应

如,RELU:

\[f(x)=max(0,x)
\]

  1. 对低强度特征信息不做反应,超过阈值后,强度越大,反应相应越大
  2. 阈值一般为0,因此样本数据与特征也尽量零均值,这可能是训练数据归一化及batchnormalization的原因

池化层

  1. 降采样:将高维特征稀疏为低维特征

    2)可以增强模型对特征畸变的鲁棒性,如手写数字笔记不工整

dropout:

打破网络的对称性,使网络结构不断重构,防止网络过拟合;

具体实现直接看源码dropout_layer.cppdropout_layer.hpp

前传过程中,bottom计算出的部分特征不参与前传过程的计算

void DropoutLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
const Dtype* bottom_data = bottom[0]->cpu_data();
Dtype* top_data = top[0]->mutable_cpu_data();
unsigned int* mask = rand_vec_.mutable_cpu_data(); //从cpu中取一段可读写的内存,返回指针mask
const int count = bottom[0]->count(); //mutable_cpu_data表示可读写的内存,而cpu_data表示只读内存
if (this->phase_ == TRAIN) {
// Create random numbers
caffe_rng_bernoulli(count, 1. - threshold_, mask); //将mask内容部分以伯努利概率置为0,置0的概率与threshold有关
for (int i = 0; i < count; ++i) {
top_data[i] = bottom_data[i] * mask[i] * scale_; //用mask掩码将bottom_data中部分特征设为死结点,不参与前传中loss的计算
}
} else {
caffe_copy(bottom[0]->count(), bottom_data, top_data);
}
}

在反传过程中,上层梯度回传时至下层时,同样会一部分被mask屏蔽,而且这个maskg前传一致,保证了前传与反传过程看到的网络结构是一致的

template <typename Dtype>
void DropoutLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top, const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
if (propagate_down[0]) {
const Dtype* top_diff = top[0]->cpu_diff();
Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();
if (this->phase_ == TRAIN) {
const unsigned int* mask = rand_vec_.cpu_data(); //将前传时写入mask内容重新赋值mask指针
const int count = bottom[0]->count();
for (int i = 0; i < count; ++i) {
bottom_diff[i] = top_diff[i] * mask[i] * scale_; //同样,反传过程也屏蔽了部分梯度,这样在一次前传与反传过程中所看见的网络结构实际就相同了,
} //得到bottom梯度后会给cpu或gpu进行solver的update
} else {
caffe_copy(top[0]->count(), top_diff, bottom_diff);
}
}
}

其中,mask初始化用到了一个 caffe_rng_bernoulli,在这篇文章中提到,其实它主要调用了boost::bernoulli_distribution,将向量初始化为一定比例的1其余为0

参考

dropout_layer

CNN基础的更多相关文章

  1. CNN基础框架简介

    卷积神经网络简介 卷积神经网络是多层感知机的变种,由生物学家休博尔和维瑟尔在早期关于猫视觉皮层的研究发展而来.视觉皮层的细胞存在一个复杂的构造,这些细胞对视觉输入空间的子区域非常敏感,我们称之为感受野 ...

  2. 卷积神经网络(CNN)基础介绍

    本文是对卷积神经网络的基础进行介绍,主要内容包含卷积神经网络概念.卷积神经网络结构.卷积神经网络求解.卷积神经网络LeNet-5结构分析.卷积神经网络注意事项. 一.卷积神经网络概念 上世纪60年代. ...

  3. CNN基础一:从头开始训练CNN进行图像分类(猫狗大战为例)

    本文旨在总结一次从头开始训练CNN进行图像分类的完整过程(猫狗大战为例,使用Keras框架),免得经常遗忘.流程包括: 从Kaggle下载猫狗数据集: 利用python的os.shutil库,制作训练 ...

  4. CNN基础四:监测并控制训练过程的法宝——Keras回调函数和TensorBoard

    训练模型时,很多事情一开始都无法预测.比如之前我们为了找出迭代多少轮才能得到最佳验证损失,可能会先迭代100次,迭代完成后画出运行结果,发现在中间就开始过拟合了,于是又重新开始训练. 类似的情况很多, ...

  5. CNN基础三:预训练模型的微调

    上一节中,我们利用了预训练的VGG网络卷积基,来简单的提取了图像的特征,并用这些特征作为输入,训练了一个小分类器. 这种方法好处在于简单粗暴,特征提取部分的卷积基不需要训练.但缺点在于,一是别人的模型 ...

  6. CNN基础二:使用预训练网络提取图像特征

    上一节中,我们采用了一个自定义的网络结构,从头开始训练猫狗大战分类器,最终在使用图像增强的方式下得到了82%的验证准确率.但是,想要将深度学习应用于小型图像数据集,通常不会贸然采用复杂网络并且从头开始 ...

  7. 深度学习笔记之CNN(卷积神经网络)基础

    不多说,直接上干货! 卷积神经网络(ConvolutionalNeural Networks,简称CNN)提出于20世纪60年代,由Hubel和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经 ...

  8. AndrewNG Deep learning课程笔记 - CNN

    参考, An Intuitive Explanation of Convolutional Neural Networks http://www.hackcv.com/index.php/archiv ...

  9. Paper/ Overview | CNN(未完待续)

    目录 I. 基础知识 II. 早期尝试 1. Neocognitron, 1980 2. LeCun, 1989 A. 概况 B. Feature maps & Weight sharing ...

随机推荐

  1. nginx服务器去掉url中的index.php 和 配置path_info

    隐藏index.php server { listen 80; server_name yourdomain.com; root /home/yourdomain/www/; index index. ...

  2. [CF1087D]Minimum Diameter Tree

    link 题目大意 有$n$个点的前边权为$0$的树,你要加入$S$边权总量,可以为分数,使得当前树的直径最小. 题目分析 题目过于毒瘤,导致于最后$1$个小时一直在做此题,没想到真的只是一个结论一样 ...

  3. 框架----Django之Ajax全套实例(原生AJAX,jQuery Ajax,“伪”AJAX,JSONP,CORS)

    一.原生AJAX,jQuery Ajax,“伪”AJAX,JSONP 1. 浏览器访问 http://127.0.0.1:8000/index/ http://127.0.0.1:8000/fake_ ...

  4. python常用序列list、tuples及矩阵库numpy的使用

    近期开始学习python机器学习的相关知识,为了使后续学习中避免编程遇到的基础问题,对python数组以及矩阵库numpy的使用进行总结,以此来加深和巩固自己以前所学的知识. Section One: ...

  5. c# windows server安装启动与卸载

    使用installutil.exe安装卸载服务时,由于需要指向服务的全路径,由于生成目录往往不是服务发布的最终目录,很不便利,下面介绍两种方式方便操作: 方式一: 项目中加入install.bat与u ...

  6. JAVA中反射机制六(java.lang.reflect包)

    一.简介 java.lang.reflect包提供了用于获取类和对象的反射信息的类和接口.反射API允许对程序访问有关加载类的字段,方法和构造函数的信息进行编程访问.它允许在安全限制内使用反射的字段, ...

  7. 对 JavaScript 进行单元测试的工具

    简介 单元测试关注的是验证一个模块或一段代码的执行效果是否和设计或预期一样.有些开发人员认为,编写测试用例浪费时间而宁愿去编写新的模块.然而,在处理大型应用程序时,单元测试实际上会节省时间:它能帮助您 ...

  8. 数组与集合List的相互转化

    数组转化为集合 #此运用的是Arrays中的asList方法,返回一个List集合 *当数组元素为基本数据类型是把整个数组当作一个元素放入List集合中,代码举例: ,,}; List<int[ ...

  9. 21、利用selenium进行Web测试

    一.案例实施步骤思路分析 1.寻包 2.指定浏览器(实例化浏览器对象) 3.打开项目 4.找到元素(定位元素) 5.操作元素 6.暂停 7.关闭二.元素定位[重点] 1.id 说明:通过元素的id属性 ...

  10. 使用JSON语法创建JS对象(重要)

    JS对象的键值可以加单引号或者不加或者加双引号 JSON语法提供了一种更简单的方式来创建对象,可以避免书写函数,也可避免用new关键字,可以直接创建一个JS对象,使用一个花括号,然后将每个属性写成&q ...