CNN基础
CNN一般结构
卷积层作用:
- 提取不同维度的特征,组合不同维度特征,其本质是卷积核,因此,学习一个有效的总卷积核是训练卷积层主要工作
2)寻找不同位置,不同大小的特征
- 根据卷积核参数计算上下层blob之前维度关系
input => conv => output:
out = (W-F+2*P)/S + 1
W:input的尺寸
F:kernel的尺寸
S:步长
P:padding的数量
非线性层
控制对不同特征特征信号所应当作出的反应
如,RELU:
\]
- 对低强度特征信息不做反应,超过阈值后,强度越大,反应相应越大
- 阈值一般为0,因此样本数据与特征也尽量零均值,这可能是训练数据归一化及batchnormalization的原因
池化层
- 降采样:将高维特征稀疏为低维特征
2)可以增强模型对特征畸变的鲁棒性,如手写数字笔记不工整
dropout:
打破网络的对称性,使网络结构不断重构,防止网络过拟合;
具体实现直接看源码dropout_layer.cpp和dropout_layer.hpp
前传过程中,bottom计算出的部分特征不参与前传过程的计算
void DropoutLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
const Dtype* bottom_data = bottom[0]->cpu_data();
Dtype* top_data = top[0]->mutable_cpu_data();
unsigned int* mask = rand_vec_.mutable_cpu_data(); //从cpu中取一段可读写的内存,返回指针mask
const int count = bottom[0]->count(); //mutable_cpu_data表示可读写的内存,而cpu_data表示只读内存
if (this->phase_ == TRAIN) {
// Create random numbers
caffe_rng_bernoulli(count, 1. - threshold_, mask); //将mask内容部分以伯努利概率置为0,置0的概率与threshold有关
for (int i = 0; i < count; ++i) {
top_data[i] = bottom_data[i] * mask[i] * scale_; //用mask掩码将bottom_data中部分特征设为死结点,不参与前传中loss的计算
}
} else {
caffe_copy(bottom[0]->count(), bottom_data, top_data);
}
}
在反传过程中,上层梯度回传时至下层时,同样会一部分被mask屏蔽,而且这个maskg前传一致,保证了前传与反传过程看到的网络结构是一致的
template <typename Dtype>
void DropoutLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top, const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
if (propagate_down[0]) {
const Dtype* top_diff = top[0]->cpu_diff();
Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();
if (this->phase_ == TRAIN) {
const unsigned int* mask = rand_vec_.cpu_data(); //将前传时写入mask内容重新赋值mask指针
const int count = bottom[0]->count();
for (int i = 0; i < count; ++i) {
bottom_diff[i] = top_diff[i] * mask[i] * scale_; //同样,反传过程也屏蔽了部分梯度,这样在一次前传与反传过程中所看见的网络结构实际就相同了,
} //得到bottom梯度后会给cpu或gpu进行solver的update
} else {
caffe_copy(top[0]->count(), top_diff, bottom_diff);
}
}
}
其中,mask初始化用到了一个 caffe_rng_bernoulli,在这篇文章中提到,其实它主要调用了boost::bernoulli_distribution,将向量初始化为一定比例的1其余为0
参考
CNN基础的更多相关文章
- CNN基础框架简介
卷积神经网络简介 卷积神经网络是多层感知机的变种,由生物学家休博尔和维瑟尔在早期关于猫视觉皮层的研究发展而来.视觉皮层的细胞存在一个复杂的构造,这些细胞对视觉输入空间的子区域非常敏感,我们称之为感受野 ...
- 卷积神经网络(CNN)基础介绍
本文是对卷积神经网络的基础进行介绍,主要内容包含卷积神经网络概念.卷积神经网络结构.卷积神经网络求解.卷积神经网络LeNet-5结构分析.卷积神经网络注意事项. 一.卷积神经网络概念 上世纪60年代. ...
- CNN基础一:从头开始训练CNN进行图像分类(猫狗大战为例)
本文旨在总结一次从头开始训练CNN进行图像分类的完整过程(猫狗大战为例,使用Keras框架),免得经常遗忘.流程包括: 从Kaggle下载猫狗数据集: 利用python的os.shutil库,制作训练 ...
- CNN基础四:监测并控制训练过程的法宝——Keras回调函数和TensorBoard
训练模型时,很多事情一开始都无法预测.比如之前我们为了找出迭代多少轮才能得到最佳验证损失,可能会先迭代100次,迭代完成后画出运行结果,发现在中间就开始过拟合了,于是又重新开始训练. 类似的情况很多, ...
- CNN基础三:预训练模型的微调
上一节中,我们利用了预训练的VGG网络卷积基,来简单的提取了图像的特征,并用这些特征作为输入,训练了一个小分类器. 这种方法好处在于简单粗暴,特征提取部分的卷积基不需要训练.但缺点在于,一是别人的模型 ...
- CNN基础二:使用预训练网络提取图像特征
上一节中,我们采用了一个自定义的网络结构,从头开始训练猫狗大战分类器,最终在使用图像增强的方式下得到了82%的验证准确率.但是,想要将深度学习应用于小型图像数据集,通常不会贸然采用复杂网络并且从头开始 ...
- 深度学习笔记之CNN(卷积神经网络)基础
不多说,直接上干货! 卷积神经网络(ConvolutionalNeural Networks,简称CNN)提出于20世纪60年代,由Hubel和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经 ...
- AndrewNG Deep learning课程笔记 - CNN
参考, An Intuitive Explanation of Convolutional Neural Networks http://www.hackcv.com/index.php/archiv ...
- Paper/ Overview | CNN(未完待续)
目录 I. 基础知识 II. 早期尝试 1. Neocognitron, 1980 2. LeCun, 1989 A. 概况 B. Feature maps & Weight sharing ...
随机推荐
- Java考试题之三
QUESTION 46Given:11. public class Test {12. public static void main(String [] args) {13. int x = 5;1 ...
- bzoj3173: [Tjoi2013]最长上升子序列(fhqtreap)
这题用fhqtreap可以在线. fhqtreap上维护以i结尾的最长上升子序列,数字按从小到大加入, 因为前面的数与新加入的数无关, 后面的数比新加入的数小, 所以新加入的数对原序列其他数的值没有影 ...
- 【bzoj4036】按位或
Portal --> bzoj4036 Solution 感觉容斥的东西内容有点qwq多啊qwq还是以题目的形式来慢慢补档好了 这里补的是min-max容斥 其实min-max容斥 ...
- shared_ptr & unique_ptr & weak_ptr (C++11)
c++11标准废除乐auto_ptr, C++ 标准库智能指针 使用这些智能指针作为将指针封装为纯旧 C++ 对象 (POCO) 的首选项. unique_ptr 只允许基础指针的一个所有者. 除非你 ...
- protobuf手册
1. c++快速上手 https://developers.google.com/protocol-buffers/docs/cpptutorial 2. c++使用手册 https://develo ...
- python 分享文件
http://note.youdao.com/noteshare?id=1787e8bf3a71fca16005ece3e7fffb6c
- 【题解】期末考试 六省联考 2017 洛谷 P3745 BZOJ 4868 贪心 三分
题目传送门:这里是萌萌哒传送门(>,<) 啊♀,据说这题有个完全贪心的做法,但是要维护太多东西好麻烦的(>,<),于是就来口胡一发三分的做法. 思路很简单,假设我指定了一个x, ...
- bzoj 1004 组合
代码: //根据Burnside定理:有m个置换k钟颜色,所有本质不同的染色方案数就是每种置换的不变元素的个数的平均数.所谓不变元素就是一种染色方案 //经过置换变换后和之前一样.所以现在就是要求不变 ...
- socket编程 ------ sockaddr_in 和 sockaddr 的区别
struct sockaddr 和 struct sockaddr_in 这两个结构体用来处理网络通信的地址. // 以下是 IPv4 的定义 struct sockaddr { unsigned s ...
- 2017北京国庆刷题Day2 afternoon
期望得分:100+100+50=250 实际得分:100+70+50=220 T1 最大值(max) Time Limit:1000ms Memory Limit:128MB 题目描述 LYK有一 ...