线性插值

先讲一下线性插值:已知数据 (x0, y0) 与 (x1, y1),要计算 [x0, x1] 区间内某一位置 x 在直线上的y值(反过来也是一样,略):

y−y0x−x0=y1−y0x1−x0
y=x1−xx1−x0y0+x−x0x1−x0y1

上面比较好理解吧,仔细看就是用x和x0,x1的距离作为一个权重,用于y0和y1的加权。双线性插值本质上就是在两个方向上做线性插值。

双线性插值

在数学上,双线性插值是有两个变量的插值函数的线性插值扩展,其核心思想是在两个方向分别进行一次线性插值[1]。见下图:

假如我们想得到未知函数 f 在点 P = (x, y) 的值,假设我们已知函数 f 在 Q11 = (x1, y1)、Q12 = (x1, y2), Q21 = (x2, y1) 以及 Q22 = (x2, y2) 四个点的值。最常见的情况,f就是一个像素点的像素值。首先在 x 方向进行线性插值,得到



然后在 y 方向进行线性插值,得到

综合起来就是双线性插值最后的结果:



由于图像双线性插值只会用相邻的4个点,因此上述公式的分母都是1。opencv中的源码如下,用了一些优化手段,比如用整数计算代替float(下面代码中的*2048就是变11位小数为整数,最后有两个连乘,因此>>22位),以及源图像和目标图像几何中心的对齐

SrcX=(dstX+0.5)* (srcWidth/dstWidth) -0.5

SrcY=(dstY+0.5) * (srcHeight/dstHeight)-0.5

这个要重点说一下,源图像和目标图像的原点(0,0)均选择左上角,然后根据插值公式计算目标图像每点像素,假设你需要将一幅5x5的图像缩小成3x3,那么源图像和目标图像各个像素之间的对应关系如下。如果没有这个中心对齐,根据基本公式去算,就会得到左边这样的结果;而用了对齐,就会得到右边的结果:

cv::Mat matSrc, matDst1, matDst2;  

matSrc = cv::imread("lena.jpg", 2 | 4);
matDst1 = cv::Mat(cv::Size(800, 1000), matSrc.type(), cv::Scalar::all(0));
matDst2 = cv::Mat(matDst1.size(), matSrc.type(), cv::Scalar::all(0)); double scale_x = (double)matSrc.cols / matDst1.cols;
double scale_y = (double)matSrc.rows / matDst1.rows; uchar* dataDst = matDst1.data;
int stepDst = matDst1.step;
uchar* dataSrc = matSrc.data;
int stepSrc = matSrc.step;
int iWidthSrc = matSrc.cols;
int iHiehgtSrc = matSrc.rows; for (int j = 0; j < matDst1.rows; ++j)
{
float fy = (float)((j + 0.5) * scale_y - 0.5);
int sy = cvFloor(fy);
fy -= sy;
sy = std::min(sy, iHiehgtSrc - 2);
sy = std::max(0, sy); short cbufy[2];
cbufy[0] = cv::saturate_cast<short>((1.f - fy) * 2048);
cbufy[1] = 2048 - cbufy[0]; for (int i = 0; i < matDst1.cols; ++i)
{
float fx = (float)((i + 0.5) * scale_x - 0.5);
int sx = cvFloor(fx);
fx -= sx; if (sx < 0) {
fx = 0, sx = 0;
}
if (sx >= iWidthSrc - 1) {
fx = 0, sx = iWidthSrc - 2;
} short cbufx[2];
cbufx[0] = cv::saturate_cast<short>((1.f - fx) * 2048);
cbufx[1] = 2048 - cbufx[0]; for (int k = 0; k < matSrc.channels(); ++k)
{
*(dataDst+ j*stepDst + 3*i + k) = (*(dataSrc + sy*stepSrc + 3*sx + k) * cbufx[0] * cbufy[0] +
*(dataSrc + (sy+1)*stepSrc + 3*sx + k) * cbufx[0] * cbufy[1] +
*(dataSrc + sy*stepSrc + 3*(sx+1) + k) * cbufx[1] * cbufy[0] +
*(dataSrc + (sy+1)*stepSrc + 3*(sx+1) + k) * cbufx[1] * cbufy[1]) >> 22;
}
}
}
cv::imwrite("linear_1.jpg", matDst1); cv::resize(matSrc, matDst2, matDst1.size(), 0, 0, 1);
cv::imwrite("linear_2.jpg", matDst2);

好了,本篇到这里,欢迎大家分享转载,注明出处即可。

参考资料

[1] 双线性插值(Bilinear Interpolation)

[2] OpenCV ——双线性插值(Bilinear interpolation)

[3] 双线性插值算法及需要注意事项

[4] OpenCV中resize函数五种插值算法的实现过程

三十分钟理解:线性插值,双线性插值Bilinear Interpolation算法的更多相关文章

  1. [转载]三十分钟理解:线性插值,双线性插值Bilinear Interpolation算法

    [转载]三十分钟理解:线性插值,双线性插值Bilinear Interpolation算法 来源:https://blog.csdn.net/xbinworld/article/details/656 ...

  2. 三十分钟理解:双调排序Bitonic Sort,适合并行计算的排序算法

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入 双调排序是data-indepen ...

  3. [重磅]Deep Forest,非神经网络的深度模型,周志华老师最新之作,三十分钟理解!

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 深度学习最大的贡献,个人认为就是表征 ...

  4. 三十分钟理解计算图上的微积分:Backpropagation,反向微分

    神经网络的训练算法,目前基本上是以Backpropagation (BP) 反向传播为主(加上一些变化),NN的训练是在1986年被提出,但实际上,BP 已经在不同领域中被重复发明了数十次了(参见 G ...

  5. 三十分钟理解博弈论“纳什均衡” -- Nash Equilibrium

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 纳什均衡(或者纳什平衡),Nash ...

  6. 数字图像处理实验(4):PROJECT 02-04 [Multiple Uses],Zooming and Shrinking Images by Bilinear Interpolation 标签: 图像处理MATLAB

    实验要求: Zooming and Shrinking Images by Bilinear Interpolation Objective To manipulate another techniq ...

  7. 【转】三十分钟学会STL算法

    转载自: http://net.pku.edu.cn/~yhf/UsingSTL.htm 这是本小人书.原名是<using stl>,不知道是谁写的.不过我倒觉得很有趣,所以化了两个晚上把 ...

  8. 线性插值&双线性插值&三线性插值

    http://www.cnblogs.com/yingying0907/archive/2012/11/21/2780092.html 內插是数学领域数值分析中的通过已知的离散数据求未知数据的过程或方 ...

  9. 【转】三十分钟掌握STL

    转自http://net.pku.edu.cn/~yhf/UsingSTL.htm 三十分钟掌握STL 这是本小人书.原名是<using stl>,不知道是谁写的.不过我倒觉得很有趣,所以 ...

随机推荐

  1. 多线程中join方法的含义

    1.作用:调用这个方法的时候,主进程会在这里停住,等待该线程进行完毕再继续往下执行. 如:不使用join的情况: <?php class Join extends Thread { public ...

  2. sloop公共程序之初始过程及启动

    1:sloop_init() 初始化主要是初始化静态sloop_*** 结构体和填充struct sloop_data 结构体中的成员. //初始化静态存储区给sloop_***结构体 static ...

  3. 手脱ASPack v2.12变形壳2

    1.PEID载入 ASPack v2.12 2.载入OD,跟之前帖子的入口特征相同,都是一个pushad,但是请不要怀疑这是同一个壳,绝对不是,pushad下一行ESP定律下硬件断点,然后shift+ ...

  4. 「Python」人脸识别应用

    人脸识别主要步骤: face_recognition 库的安装 安装此库,首先需要安装编译dlib,此处我们偷个懒,安装软件Anaconda(大牛绕过),此软件预装了dlib. 安装好后,我们直接通过 ...

  5. (转)javap 指令集

    栈和局部变量操作将常量压入栈的指令aconst_null 将null对象引用压入栈iconst_m1 将int类型常量-1压入栈iconst_0 将int类型常量0压入栈iconst_1 将int类型 ...

  6. 将本地项目和远程git仓库相连接

    有时候写代码,是存在本地的,远程仓库没有对应的代码库,这个时候就需要把本地的代码项目与远程git库连接并推送. 1. 将项目文件添加到仓库中 本地的项目文档: 添加项目文件 git add . 2. ...

  7. 课程设计——利用信号量实现生产者-消费者问题(java)

    package cn.Douzi.ProductConsume; import java.util.LinkedList; import java.util.Queue; import java.ut ...

  8. [Luogu 1196] NOI2002 银河英雄传说

    [Luogu 1196] NOI2002 银河英雄传说 话说十六年前的 NOI 真简单... 我一开始还把题看错了- 题意:一群人,每个人各自成一队,每次命令让两队首位相接合成一队,每次询问问你某两个 ...

  9. 教你Snapseed软件八个常用调图工具

    教你Snapseed软件八个常用调图工具 教你Snapseed(指划修图)软件八个常用调图工具 老阿·编写 Snapseed是目前手机摄影修图中功能最强大的一款软件,很多功能很像电脑用的Photosh ...

  10. 关于aspx.designer.cs的研究

    .aspx文件..aspx.cs文件和.aspx.designer.cs的一些说明 .aspx文件:(页面)书写页面代码.存储的是页面design代码.只是放各个控件的代码,处理代码一般放在.cs文件 ...