Visual Tracking with Fully Convolutional Networks
http://blog.csdn.net/carrierlxksuper/article/details/48918297
传统的跟踪方法依赖低维的人工特征,但这种特征对目标的外观变化等问题不够鲁棒。
与此相比,CNN从大量的数据中能够学到高级的信息,有较强的分类能力,这些特征有较好的泛化能力。
如果直接用CNN来跟踪的话,需要大量的数据来进行训练,这显然不合适。之前有人用DNN做在线跟踪并取得了不错的效果,但这个过程中,DNN被当做黑盒子来用。这篇文章从跟踪的角度研究了CNN特征的性质,发现了两个重要的性质:
首先,不同深度的CNN特征在跟踪时有不同的性质。顶层的卷积层获得了更抽象更高级的特征,这些特征能更好的区分不同种类的物体,处理形变遮挡时也更加鲁棒。
但如果是同类物体,这些特征的区分度并不好。更低卷积层提供了更细节的局部特征,这些特征能将具有相似外观的同类物体更好的区分开来。但在物体有较大形变时不够鲁棒。基于此,本文提出自动切换高低层进行跟踪。
其次,CNN的特征是从ImageNet上提前训练来区分物体的,但对于特定的物体来说,并不是所有特征都是有用于跟踪的,有些特征会被当做noise。如果把所有的特征图都用上的话,很难将目标与背景进行区分。可以通过特征选择来丢掉noise 特征,那么该如何进行特征选择呢?
这篇论文的主要贡献有:
1)分析CNN从大规模图像分类中学到的特征,找到适用于跟踪的那些特征。这有助于更好的理解CNN特征和设计适用于跟踪的特征。
2)提出新的跟踪方法,使用两层卷积网络,可以更好的处理物体形变和区分目标与背景。
3)提出能自动选择特征的方法,提高跟踪精度。
用于跟踪的深度特征分析
分析是基于16层的VGG网络的,VGG是在ImageNet上已经训练好的。其中有13个卷积层跟着3个全连接层。
分析1 尽管CNN特征图的感受野很大,激活特征图是稀疏并且局部的,激活区域和目标区域高度相关。
从图上可以看出特征图只有少量非0值,这些非0值是位置确定的且与目标区域有关。还得到了CNN 特征的语义图,语义图表明,输入的改变,导致目标区域的所选特征图大幅增长。因此,这些特征map获得了目标的可视化描述。这就表明,DNN学到的特征是有位置的且与目标相关的,因此,CNN的特征可用于确定目标位置。
分析2 很多CNN特征是noisy,或者与将目标与背景区分无关
用ImageNet训练的CNN特征能描述大量的目标,但当跟踪时,应当只关注小部分的目标,只需将目标与背景区分即可,这就要求我们选择好的特征。
分析3 不同层编码不同的特征,高层获得目标种类的语义概念,低层编码更多的区分特征来获得内部的种类变化。
因为特征图有大量冗余,故采用一种稀疏表示框架来更好的可视化。
Visual Tracking with Fully Convolutional Networks的更多相关文章
- 论文笔记之:Visual Tracking with Fully Convolutional Networks
论文笔记之:Visual Tracking with Fully Convolutional Networks ICCV 2015 CUHK 本文利用 FCN 来做跟踪问题,但开篇就提到并非将其看做 ...
- 论文笔记:SiamRPN++: Evolution of Siamese Visual Tracking with Very Deep Networks
SiamRPN++: Evolution of Siamese Visual Tracking with Very Deep Networks 2019-04-02 12:44:36 Paper:ht ...
- 中文版 R-FCN: Object Detection via Region-based Fully Convolutional Networks
R-FCN: Object Detection via Region-based Fully Convolutional Networks 摘要 我们提出了基于区域的全卷积网络,以实现准确和高效的目标 ...
- Fully Convolutional Networks for Semantic Segmentation 译文
Fully Convolutional Networks for Semantic Segmentation 译文 Abstract Convolutional networks are powe ...
- 论文阅读(Xiang Bai——【CVPR2016】Multi-Oriented Text Detection with Fully Convolutional Networks)
Xiang Bai--[CVPR2016]Multi-Oriented Text Detection with Fully Convolutional Networks 目录 作者和相关链接 方法概括 ...
- 论文学习:Fully Convolutional Networks for Semantic Segmentation
发表于2015年这篇<Fully Convolutional Networks for Semantic Segmentation>在图像语义分割领域举足轻重. 1 CNN 与 FCN 通 ...
- 『计算机视觉』R-FCN:Object Detection via Region-based Fully Convolutional Networks
一.网络介绍 参考文章:R-FCN详解 论文地址:Object Detection via Region-based Fully Convolutional Networks R-FCN是Faster ...
- 【Semantic Segmentation】 Instance-sensitive Fully Convolutional Networks论文解析(转)
这篇文章比较简单,但还是不想写overview,转自: https://blog.csdn.net/zimenglan_sysu/article/details/52451098 另外,读这篇pape ...
- 【Detection】R-FCN: Object Detection via Region-based Fully Convolutional Networks论文分析
目录 0. Paper link 1. Overview 2. position-sensitive score maps 2.1 Background 2.2 position-sensitive ...
随机推荐
- Java进程配置文件Reload
我们在开发Java程序的时候,很多常量信息都存在配置文件中,比如数据库连接信息.ip黑名单,事件的超时时间等等.当需要该这些配置的值时都需要重新启动进程,改动的配置才会生效,有时候线上的应用不能容忍这 ...
- CF 566A Matching Names
CF 566A Matching Names 题目描述 给出n个名字和n个昵称,求一个名字和昵称的劈配方案,使得被劈配的名字和昵称的最长公共前缀长度的和最大. 1<=n<=100000 字 ...
- 怎样才能高效地使用JQuery
1. 使用最新版本的jQuery jQuery的版本更新很快,你应该总是使用最新的版本.因为新版本会改进性能,还有很多新功能.下面就来看看,不同版本的jQuery性能差异有多大.这里是三条最常见的jQ ...
- python 学习笔记(十二) 文件和序列化
python 文件读写和序列化学习.## python文件读写`1 打开并且读取文件` f = open('openfile.txt','r') print(f.read()) f.close() ` ...
- nginx日志增加cookie信息
一.获取全部cookie信息 这个比较方便,直接在nginx.conf文件中添加$http_cookie log_format main '[$time_local] - $remote_addr:$ ...
- jquery读取html5的data-属性
前端代码的工作无非就是接收后端发来的数据,展示到前端页面:又或者,给无数的按钮,图片,段落等绑定各种事件.那么我们在绑定事件是需要拿取HTML页面的元素,以及在拿取的元素给定各式各样的自定义属性.当需 ...
- 往android主项目中添加辅助项目
一个较大的工程往往需要多个项目组成,便于更好的并行开发和管理,但最后还是要合到一起来发布.那如何往主项目里添加其他辅助项目呢? 通常的做法是将辅助项目打包成jar包,像库一样导入到主项目,但是如果我们 ...
- 根据wsdl的url,使用axis1.4生成客户端,并且对webservice进行调用(转)
根据wsdl的url,使用axis1.4生成客户端,并且对webservice进行调用 axis1.4下载地址 1.到www.apache.org上去下载axis-bin-1_4.zip,如要关联源代 ...
- 816C. Karen and Game 贪心
LINK 题意:给出n*m的矩阵图,现有对行或对列上的数减1的操作,问最少几步使所有数变为0,无解输出-1 思路:贪心暴力即可.先操作行和先操作列结果可能不同注意比较. /** @Date : 201 ...
- cin.getline()与getline()
C++中有两个getline函数, cin.getline()与getline() 这两个函数相似,但是 这两个函数分别定义在不同的头文件中. cin.getline()属于istream流,而 ...