GPU: NVIDIA Tesla K40C

Enter the 'root' mode:

$ su -

1. Pre-installation

1.1 Verify you have a CUDA-capable GPU

$ lspci | grep -i nvidia

1.2 Verify you have a supported version of Linux

$ uname -m && cat /etc/*release

1.3 Verify the system has gcc installed

$ gcc --version

1.4 Verify the system has the correct kernel headers and development packages installed

$ uname -r

Note: If you perform a system update which changes the version of the linux kernel being used, make sure to rerun the commands below to ensure you have the correct kernel headers and kernel development packages installed. Otherwise, the CUDA Driver will fail to work with the new kernel.

$ yum install kernel-devel-$(uname -r) kernel-headers-$(uname -r)

2. Runfile installation

2.1 Disable the Nouveau drivers

The Nouveau drivers are loaded if the following command prints anything:

$ lsmod | grep nouveau

To disable the Nouveau drivers, creating a file at "/usr/lib/modprobe.d/blacklist-nouveau.conf" with following content:

blacklist nouveau

options nouveau modeset=0

Then regenerate the kernel inittramfs:

$ dracut --force

2.2 Reboot into the text mode (runlevel 3)

$ systemctl set-default multi-user.target

$ init 3

$ reboot

2.3 Run the CUDA toolkit installer

$ sh cuda_<version>_linux.run --no-opengl-libs

Note:

(1) If installing the driver, the installer will also ask if the openGL libraries should be installed. If the GPU used for display is not an NVIDIA GPU, the NVIDIA openGL libraries should not be installed. Otherwise, the openGL libraries used by the graphics driver of the non-NVIDIA GPU will be overwritten and the GUI will not work. If performing a silent installation, the --no-opengl-libs option should be used to prevent the openGL libraries from being installed. See the Advanced Options section for more details.

(2) If the GPU used for display is an NVIDIA GPU, the X server configuration file, /etc/X11/xorg.conf, may need to be modified. In some cases, nvidia-xconfig can be used to automatically generate a xorg.conf file that works for the system. For non-standard systems, such as those with more than one GPU, it is recommended to manually edit the xorg.conf file. Consult the xorg.conf documentation for more information.

2.4 Reboot into the graphical mode (runlevel 5)

$ systemctl set-default graphical.target

$ init 5

3. Post-installation actions

3.1 Environment setup

$ export PATH=/usr/local/cuda-9.0/bin${PATH:+:${PATH}}

To change the environment variables for 64-bit operating systems:

$ export LD_LIBRARY_PATH=/usr/local/cuda-9.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

3.2 Install Third-party libraries

$ yum install freeglut-devel libX11-devel libXi-devel libXmu-devel \ make mesa-libGLU-devel

3.3 Verify the installation

(1) Verify Nvidia driver

$ cat /proc/driver/nvidia/version

$ nvidia-smi    // NVIDIA System Management Interface: It allows administrators to query GPU device state.

(2) Verify the cuda compiler

$ nvcc --version / nvcc -V

3.4 Compiler CUDA examples

Enter the "~/NVIDIA_CUDA-9.0_Samples" directory, type "make" command to run the "Makefile" file.

After compilation, then enter the "~/NVIDIA_CUDA-9.0_Samples/bin" directory to find and run the "deviceQuery" executable file.

This command shows the information of GPU device.

NOTES:

For Nvidia Tesla GPU, the ECC (error correcting code) is abled by default.

Check the information of GPU:

$ nvidia-smi -i n                  ## 'n' is the index of GPU device

To disble it, use the following command:

$ nvidia-smi -i n -e 0/1       ## 0: close; 1: open

When ECC is diabled, the computing performance will be increased about 13% ~ 15%.

CentOS 7中以runfile形式安装CUDA 9.0的更多相关文章

  1. Ubuntu 16.04 上安装 CUDA 9.0 详细教程

    https://blog.csdn.net/QLULIBIN/article/details/78714596 前言: 本篇文章是基于安装CUDA 9.0的经验写,CUDA9.0目前支持Ubuntu1 ...

  2. ubuntu 安装CUDA 8.0

    安装CUDA 8.0 1) 在终端运行指令 sudo sh cuda_8.0.44_linux.run --no-opengl-libs 不加这个选项会进入循环登陆 2) 之后是一些提示信息,输入ac ...

  3. nginx在centos 7中源码编译安装【添加grpc的支持】

    安装依赖软件 1.安装编译工具gcc gcc是一个开源编译器集合,用于处理各种各样的语言:C.C++.Java.Ada等,在linux世界中是最通用的编译器,支持大量处理器:x86.AMD64.Pow ...

  4. Ubuntu 18.04 安装 CUDA 9.0

    sudo dpkg -i cuda-repo-ubuntu1604-9-0-local_9.0.176-1_amd64.deb sudo apt-key add /var/cuda-repo-< ...

  5. centos 6.x x86 源码安装git-2.3.0

    (1) 添加rpmforge源 wget http://pkgs.repoforge.org/rpmforge-release/rpmforge-release-0.5.3-1.el6.rf.i686 ...

  6. caffe安装:ubuntu16.04 + opencv2.4 + python 2.7+ CUDA 8.0 RC + CuDNN 5.0

    官方教程:http://caffe.berkeleyvision.org/install_apt.html 主要参考教程: https://github.com/BVLC/caffe/wiki/Ubu ...

  7. Ubuntu 16.04 + CUDA 8.0 + cuDNN v5.1 + TensorFlow(GPU support)安装配置详解

    随着图像识别和深度学习领域的迅猛发展,GPU时代即将来临.由于GPU处理深度学习算法的高效性,使得配置一台搭载有GPU的服务器变得尤为必要. 本文主要介绍在Ubuntu 16.04环境下如何配置Ten ...

  8. CAFFE(一):Ubuntu 下安装CUDA(安装:NVIDIA-384+CUDA9.0+cuDNN7.1)

    (安装:NVIDIA-384+CUDA9.0+cuDNN7.1) 显卡(GPU)驱动:NVIDIA-384 CUDA:CUDA9.0 cuDNN:cuDNN7.1 Ubuntu 下安装CUDA需要装N ...

  9. RHEL/CentOS 7 中配置 PXE 网络启动服务器

    RHEL/CentOS 7 中配置 PXE 网络启动服务器 作者: Matei Cezar 译者: LCTT joeren | 2015-02-17 14:28   评论: 13 收藏: 8 分享:  ...

随机推荐

  1. 使用git拉取github上的项目

    一. 安装Git 去Git官网,下载安装包,一路点next,默认安装. 安装之后,在空白处右键,菜单显示有 Git GUI Here 和 Git Bash Here ,表示Git安装成功. 二. 配置 ...

  2. 使用nginx做反向代理

    很多同学喜欢用nginx做反向代理访问某些网站,原因大家都懂的,今天老高记录一下如何使用nginx做反向代理以及如何配置和优化nginx的反向代理. 准备工作 首先,你需要一个稳定的国外的便宜的VPS ...

  3. 搜索:DLX算法

    精确覆盖问题:在一个0-1矩阵中,选定部分行,使得每一列都有且只有一个1.求解一种选法 舞蹈链(Dance Link),也就是一个循环十字链表,可以快速的删掉和恢复某行某列 结合了舞蹈链的搜索就称作D ...

  4. HDU 3507 单调队列 斜率优化

    斜率优化的模板题 给出n个数以及M,你可以将这些数划分成几个区间,每个区间的值是里面数的和的平方+M,问所有区间值总和最小是多少. 如果不考虑平方,那么我们显然可以使用队列维护单调性,优化DP的线性方 ...

  5. LightOJ 1096 - nth Term 矩阵快速幂

    http://www.lightoj.com/volume_showproblem.php?problem=1096 题意:\(f(n)  = a * f(n-1) + b * f(n-3) + c, ...

  6. Spring bean - scope详解

    Scope是定义Spring如何创建bean的实例的. 在创建bean的时候可以带上scope属性,scope有下面几种类型. Singleton 这也是Spring默认的scope,表示Spring ...

  7. 天梯赛 L2-006 树的遍历 (二叉树)

    给定一棵二叉树的后序遍历和中序遍历,请你输出其层序遍历的序列.这里假设键值都是互不相等的正整数. 输入格式: 输入第一行给出一个正整数N(<=30),是二叉树中结点的个数.第二行给出其后序遍历序 ...

  8. Ubuntu 17.10 安装 “爱壁纸” 时,缺失了 python-support 依赖

    Ubuntu 17.10 安装 "爱壁纸" 的 deb 包时,缺失了 python-support 依赖.使用  sudo apt-get -f install 也没修复.查了下官 ...

  9. 使用angluar-cli的ng g component home指令出现的错误

    Error: ELOOP: too many symbolic links encountered, stat '/Users/zzy/angular/taskmgr/node_modules/@an ...

  10. php判断是手机还是pc访问从而走不同url

    <?php header("Content-type:text/html;charset=utf-8"); function is_mobile(){ $user_agent ...