转自:打开链接

Bounding-Box regression

最近一直看检测有关的Paper, 从rcnn, fast rcnn, faster rcnn, yolo, r-fcn, ssd,到今年cvpr最新的yolo9000。这些paper中损失函数都包含了边框回归,除了rcnn详细介绍了,其他的paper都是一笔带过,或者直接引用rcnn就把损失函数写出来了。前三条网上解释比较多,后面的两条我看了很多paper,才得出这些结论。

  • 为什么要边框回归?
  • 什么是边框回归?
  • 边框回归怎么做的?
  • 边框回归为什么宽高,坐标会设计这种形式?
  • 为什么边框回归只能微调,在离Ground Truth近的时候才能生效?

为什么要边框回归?

这里引用王斌师兄的理解,如下图所示:

对于上图,绿色的框表示Ground Truth, 红色的框为Selective Search提取的Region Proposal。那么即便红色的框被分类器识别为飞机,但是由于红色的框定位不准(IoU<0.5), 那么这张图相当于没有正确的检测出飞机。 如果我们能对红色的框进行微调, 使得经过微调后的窗口跟Ground Truth 更接近, 这样岂不是定位会更准确。 确实,Bounding-box regression 就是用来微调这个窗口的。

边框回归是什么?

继续借用师兄的理解:对于窗口一般使用四维向量(x,y,w,h) 来表示, 分别表示窗口的中心点坐标和宽高。 对于图 2, 红色的框 P 代表原始的Proposal, 绿色的框 G 代表目标的 Ground Truth, 我们的目标是寻找一种关系使得输入原始的窗口 P 经过映射得到一个跟真实窗口 G 更接近的回归窗口

对于IoU大于指定值这块,我并不认同作者的说法。我个人理解,只保证Region Proposal和Ground Truth的宽高相差不多就能满足回归条件。x,y位置到没有太多限制,这点我们从YOLOv2可以看出,原始的边框回归其实x,y的位置相对来说对很大的。这也是YOLOv2的改进地方。详情请参考我的博客YOLOv2

总结

里面很多都是参考师兄在caffe社区的回答,本来不想重复打字的,但是美观的强迫症,让我手动把latex公式巴拉巴拉敲完,当然也为了让大家看起来顺眼。后面还有一些公式那块资料很少,是我在阅读paper+个人总结,不对的地方还请大家留言多多指正。

【边框回归】边框回归(Bounding Box Regression)详解(转)的更多相关文章

  1. 边框回归(Bounding Box Regression)详解

    原文地址:http://blog.csdn.net/zijin0802034/article/details/77685438 Bounding-Box regression 最近一直看检测有关的Pa ...

  2. [转]边框回归(Bounding Box Regression)详解

    https://blog.csdn.net/zijin0802034/article/details/77685438 Bounding-Box regression 最近一直看检测有关的Paper, ...

  3. [转载]边框回归(Bounding Box Regression)

    [转载]边框回归(Bounding Box Regression) 许多模型中都应用到了这种方法来调整piror使其和ground truth尽量接近,例如之前自己看过的SSD模型 这篇文章写的很好, ...

  4. 目标检测中bounding box regression

    https://zhuanlan.zhihu.com/p/26938549 RCNN实际包含两个子步骤,一是对上一步的输出向量进行分类(需要根据特征训练分类器):二是通过边界回归(bounding-b ...

  5. 论文阅读笔记四十七:Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression(CVPR2019)

    论文原址:https://arxiv.org/pdf/1902.09630.pdf github:https://github.com/generalized-iou 摘要 在目标检测的评测体系中,I ...

  6. 目标检测中的bounding box regression

    目标检测中的bounding box regression 理解:与传统算法的最大不同就是并不是去滑窗检测,而是生成了一些候选区域与GT做回归.

  7. Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression

    Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression 2019-05-20 19:3 ...

  8. Windows渗透利器之Pentest BOX使用详解(一)

    内容概览:                                     知识科普                                    优缺点总结 功能参数详解翻译: 控制 ...

  9. 逻辑回归(Logistic Regression)详解,公式推导及代码实现

    逻辑回归(Logistic Regression) 什么是逻辑回归: 逻辑回归(Logistic Regression)是一种基于概率的模式识别算法,虽然名字中带"回归",但实际上 ...

随机推荐

  1. INFORMATION_SCHEMA.STATISTICS 统计 表 库 大小

    INFORMATION_SCHEMA MySQL :: MySQL 5.5 Reference Manual :: 21 INFORMATION_SCHEMA Tables https://dev.m ...

  2. UEFI,BIOS,MBR,

    UEFI启动是一种新的主板引导项,正被看做是有近20多年历史的BIOS 的继任者.顾名思义,快速启动是可以提高开机后操作系统的启动速度.由于开机过程中UEFI的介入 第一:安全性更强 UEFI启动需要 ...

  3. js Ajax 跨域请求

    一.使用jsonp的方式(只支持get请求) 二.使用cors的方式(支持HTTP的大部分请求方式) 三.apache的转发(修改服务器配置) 没有试验,暂时不详细写!

  4. LInux中的物理内存管理

    2017-02-23 一.伙伴系统 LInux下用伙伴系统管理物理内存页,伙伴系统得益于其良好的算法,一定程度上可以避免外部碎片为何这么说?先回顾下Linux下虚拟地址空间的分布. 在X86架构下,系 ...

  5. 你应该知道的vim插件之surround.vim

    写代码的时候你会发现这个插件是多么有用! 强烈推荐! 0×01.change 123456 cs"' cs"<q> cs)] cst<p> csw' csW ...

  6. 7.Git工作区和暂存区

    Git和其他版本控制系统如SVN的一个不同之处就是有暂存区的概念. 先来看名词解释. 1.工作区(Working Directory) 就是你在电脑里能看到的目录,比如我的test文件夹就是一个工作区 ...

  7. shell调用python脚本,并且向python脚本传递参数

    1.shell调用python脚本,并且向python脚本传递参数: shell中: python test.py $para1 $para2 python中: import sys def main ...

  8. linux中执行定时任务对oracle备份(crontab命令)

    执行定时任务对oracle表数据备份: 1.创建sh脚本 [oracle@localhost ~]$ vi bak.sh 2.添加脚本内容 #!/bin/bash #:本脚本自动备份7天的数据库,每次 ...

  9. VS和IE或者360兼容模式简单调试js方法

    首先IE(8.0版本以上)将脚本调试去掉,如下图 之后在vs里面的js要调试的地方添加代码debugger ,如下图所示 当程序运行到debugger处时,就会提示要调试,选择vs版本即可 之后会出现 ...

  10. smarty模板(转载)

    一.smarty的程序设计部分: 在smarty的模板设计部分我简单的把smarty在模板中的一些常用设置做了简单的介绍,这一节主要来介绍一下如何在smarty中开始我们程序设计.下载Smarty文件 ...