【2018.06.26NOIP模拟】T2号码bachelor


题目描述

Mike 正在在忙碌地发着各种各样的的短信。旁边的同学 Tom 注意到,Mike 发出短信的接收方手机号码似乎都满足着特别的性质,难道Mike 的好朋友是满足正态分布的?Tom 很好奇。

由于 Mike 有着自己最喜欢的数字 a ,并且 a 的范围是:2≤a≤9 。Tom 从这里入手,发现了一些端倪,假设 Mike 发的电话号码是一个十进制数字 S ,Tom 发现 S 会满足以下三个性质中的一个:
1.S 是 a 的倍数。
2.S 在十进制表示下的各项数字加起来是 a 的倍数。
3.S 的某一位是 a 。
比如说当 a=7 时,21,16,17 这三个数字组成的电话号码都是会被Mike发短信的,他们分别满足 1,2,3 性质。

Tom 在想:如果给你两个自然数 L,R,以及 Mike 最喜欢的数字 a ,在 [L,R] 中有多少个号码是 Mike 要发短信的手机号码,只需要你告诉他这些数字的平方和。比如说 3,7 是合法的,那么你应该输出 32 + 72 = 58 这个数。

当然,由于答案可能很大,你只需要将答案对 109 + 7 取模即可。

输入格式

输入的第一行包括一个正整数 T ,表示总共有 T 组询问。
接下来有 T 行,每行三个整数 L,R,A 。

输出格式

输出包括 T 行,每行一个整数,表示对 10^9 + 7 取模的答案。

输入

3
2 20 6
3 203 7
11 771 2

输出

1884
1593269
32817226

备注

【数据范围】
对于 15% 的数据,0≤L≤R≤10^6,T=1
对于 35% 的数据,0≤L≤R≤10^7,T=1
另外有 25% 的数据,A=2;L=10^k;R=10^v;k和v都是自然数。
对于 100% 的数据,0≤L≤R≤10^18;2≤A≤9;T≤100



#include<bits/stdc++.h>
using namespace std;
#define Mod 1000000007
#define LL long long
int f0[20][10][10][2][2];
int f1[20][10][10][2][2];
int f2[20][10][10][2][2];
//f0个数 f1和 f2平方和
//位数 数位的和 数的大小 是否出现过 是否满位
int a[20],n,m;
LL l,r;
void divide(LL x){
n=0;
while(x){a[++n]=x%10;x/=10;}
for(int i=1;i<=n/2;i++)swap(a[i],a[n-i+1]);
}
int dp(LL x){
if(x<=0)return 0;
memset(f0,0,sizeof(f0));
memset(f1,0,sizeof(f1));
memset(f2,0,sizeof(f2));
divide(x);
for(int i=0;i<a[1];i++){
f0[1][i%m][i%m][(i==m)][0]+=1;
f1[1][i%m][i%m][(i==m)][0]+=i;
f2[1][i%m][i%m][(i==m)][0]+=i*i;
}
f0[1][a[1]%m][a[1]%m][a[1]==m][1]+=1;
f1[1][a[1]%m][a[1]%m][a[1]==m][1]+=a[1];
f2[1][a[1]%m][a[1]%m][a[1]==m][1]+=a[1]*a[1];
for(int i=1;i<n;i++)
for(int j=0;j<m;j++)
for(int k=0;k<m;k++)
for(int t=0;t<2;t++){
for(int s=0;s<10;s++){
f0[i+1][(j+s)%m][(k*10+s)%m][(s==m)||t][0]=(f0[i+1][(j+s)%m][(k*10+s)%m][(s==m)||t][0]+f0[i][j][k][t][0])%Mod;
f1[i+1][(j+s)%m][(k*10+s)%m][(s==m)||t][0]=(f1[i+1][(j+s)%m][(k*10+s)%m][(s==m)||t][0]+10LL*f1[i][j][k][t][0]+1LL*s*f0[i][j][k][t][0])%Mod;
f2[i+1][(j+s)%m][(k*10+s)%m][(s==m)||t][0]=(f2[i+1][(j+s)%m][(k*10+s)%m][(s==m)||t][0]+100LL*f2[i][j][k][t][0]+20LL*s*f1[i][j][k][t][0]+1LL*s*s*f0[i][j][k][t][0])%Mod;
}
for(int s=0;s<a[i+1];s++){
f0[i+1][(j+s)%m][(k*10+s)%m][(s==m)||t][0]=(f0[i+1][(j+s)%m][(k*10+s)%m][(s==m)||t][0]+f0[i][j][k][t][1])%Mod;
f1[i+1][(j+s)%m][(k*10+s)%m][(s==m)||t][0]=(f1[i+1][(j+s)%m][(k*10+s)%m][(s==m)||t][0]+10LL*f1[i][j][k][t][1]+1LL*s*f0[i][j][k][t][1])%Mod;
f2[i+1][(j+s)%m][(k*10+s)%m][(s==m)||t][0]=(f2[i+1][(j+s)%m][(k*10+s)%m][(s==m)||t][0]+100LL*f2[i][j][k][t][1]+20LL*s*f1[i][j][k][t][1]+1LL*s*s*f0[i][j][k][t][1])%Mod;
}
f0[i+1][(j+a[i+1])%m][(k*10+a[i+1])%m][(a[i+1]==m)||t][1]=(f0[i+1][(j+a[i+1])%m][(k*10+a[i+1])%m][(a[i+1]==m)||t][1]+f0[i][j][k][t][1])%Mod;
f1[i+1][(j+a[i+1])%m][(k*10+a[i+1])%m][(a[i+1]==m)||t][1]=(f1[i+1][(j+a[i+1])%m][(k*10+a[i+1])%m][(a[i+1]==m)||t][1]+10LL*f1[i][j][k][t][1]+1LL*a[i+1]*f0[i][j][k][t][1])%Mod;
f2[i+1][(j+a[i+1])%m][(k*10+a[i+1])%m][(a[i+1]==m)||t][1]=(f2[i+1][(j+a[i+1])%m][(k*10+a[i+1])%m][(a[i+1]==m)||t][1]+100LL*f2[i][j][k][t][1]+20LL*a[i+1]*f1[i][j][k][t][1]+1LL*a[i+1]*a[i+1]*f0[i][j][k][t][1])%Mod;
}
int ans=0;
for(int i=0;i<m;i++)
for(int j=0;j<m;j++)
for(int k=0;k<=1;k++)
ans=(ans+f2[n][i][j][1][k])%Mod;
for(int i=0;i<m;i++)
for(int j=0;j<=1;j++)
ans=(ans+f2[n][0][i][0][j])%Mod;
for(int i=1;i<m;i++)
for(int j=0;j<=1;j++)
ans=(ans+f2[n][i][0][0][j])%Mod;
return ans;
}
int main(){
// freopen("bachelor.in","r",stdin);
// freopen("bachelor.out","w",stdout);
int T;scanf("%d",&T);
while(T--){
scanf("%lld%lld%d",&l,&r,&m);
printf("%d\n",(dp(r)-dp(l-1)+Mod)%Mod);
}
return 0;
}

【2018.06.26NOIP模拟】T2号码bachelor 【数位DP】*的更多相关文章

  1. 2018.07.26NOIP模拟 魔法数字(数位dp)

    魔法数字 题目背景 ASDFZ-NOIP2016模拟 题目描述 在数论领域中,人们研究的基础莫过于数字的整除关系.一般情况下,我们说整除总在两个数字间进行,例如 a | b(a能整除b)表示 b 除以 ...

  2. 【2018.06.26NOIP模拟】T3节目parade 【支配树】*

    [2018.06.26NOIP模拟]T3节目parade 题目描述 学校一年一度的学生艺术节开始啦!在这次的艺术节上总共有 N 个节目,并且总共也有 N 个舞台供大家表演.其中第 i 个节目的表演时间 ...

  3. 【2018.06.26NOIP模拟】T1纪念碑square 【线段树】*

    [2018.06.26NOIP模拟]T1纪念碑square 题目描述 2034年,纪念中学决定修建校庆100周年纪念碑,作为杰出校友的你被找了过来,帮校方确定纪念碑的选址. 纪念中学的土地可以看作是一 ...

  4. 2018.06.26 NOIP模拟 号码(数位dp)

    题目背景 SOURCE:NOIP2015-GDZSJNZX(难) 题目描述 Mike 正在在忙碌地发着各种各样的的短信.旁边的同学 Tom 注意到,Mike 发出短信的接收方手机号码似乎都满足着特别的 ...

  5. 2018.08.19 NOIP模拟 number(类数位dp)

    Number 题目背景 SOURCE:NOIP2015-SHY-10 题目描述 如果一个数能够表示成两两不同的 3 的幂次的和,就说这个数是好的. 比如 13 是好的,因为 13 = 9 + 3 + ...

  6. 2018.09.07 Amount of degrees(数位dp)

    描述 求给定区间[X,Y]中满足下列条件的整数个数:这个数恰好等于K个互不相等的B的整数次幂之和. 例如,设X=15,Y=20,K=2,B=2,则有且仅有下列三个数满足题意: 17 = 24+20, ...

  7. [CSP-S模拟测试]:密码(数位DP+库默尔定理)

    题目描述 为了揭穿$SERN$的阴谋,$Itaru$黑进了$SERN$的网络系统.然而,想要完全控制$SERN$,还需要知道管理员密码.$Itaru$从截获的信息中发现,$SERN$的管理员密码是两个 ...

  8. [CSP-S模拟测试]:reverse(数位DP)

    题目描述 我们定义: $\overline{d_k...d_2d_1}=\sum \limits_{i=1}^kd_i\times {10}^{i-1}=n(d_i\in [0,9]\ and\ d_ ...

  9. 2018.11.07 NOIP模拟 异或(数位dp)

    传送门 对于每个二进制位单独考虑贡献. 然后对于两种情况分别统计. 对于第二种要用类似数位dpdpdp的方法来计算贡献. 代码

随机推荐

  1. /nagios/cgi-bin/cmd.cgi无法打开

    原因分析,nginx不支持post. 解决方法,重新编译nagios 1.vi /nagios-4.0.8/cgi/cmd.c 找到printf("<form method='post ...

  2. 实现Runnable和继承Thread的区别

    啥都先不说,运行两段程序看看结果再分析 实现Runnable接口的程序代码 public class ThreadTest1 implements Runnable { private int num ...

  3. 【Python】“UnicodeDecodeError: 'ascii' codec can't decode byte 0xe9”根因及解决方法

    背景 自动化测试调用HTMLTestRunner生成测试报告的时候,出现了编码错误,错误如题 原因 搜索了很多资料,得出的结论是python的str默认是ascii编码,和unicode编码冲突,就会 ...

  4. SSM整合报错org.springframework.beans.factory.UnsatisfiedDependencyException

    我解决的办法是把.m2仓库所有文件删除,重新maven project就可以了. 但是在做这一步之前,报错如下: ①org.springframework.beans.factory.Unsatisf ...

  5. js打乱数组的实战应用

    文章首发于: https://www.xiabingbao.com/post/javascript/js-random-array.html 在js中,能把数组随机打乱的方法有很多,每个方法都有自己的 ...

  6. javascript模块化编写

    目录: 1. 开篇语 2. 对象形式写法 3. 立即执行函数写法 4. prototype写法 5. 总结 1. 开篇语 现在我们写代码不再是一个人包办所有的活儿,都是在多人合作的情况下完成的.我们只 ...

  7. PHP libevent函数基本介绍

    3.2   主要函数介绍 按照使用libevnet库顺序,看一下相关函数做什么操作. 3.2.1  event_init 调用event_base_new,初始化struct event_base对象 ...

  8. Java 注解(Annotation)秒懂,你可以这样学,

    文章开头先引入一处图片. 这处图片引自老罗的博客.为了避免不必要的麻烦,首先声明我个人比较尊敬老罗的.至于为什么放这张图,自然是为本篇博文服务,接下来我自会说明.好了,可以开始今天的博文了. Anno ...

  9. [myeclipse]@override报错问题

    @Override是JDK5 就已经有了,但有个小小的Bug,就是不支持对接口的实现,认为这不是Override 而JDK6 修正了这个Bug,无论是对父类的方法覆盖还是对接口的实现都可以加上@Ove ...

  10. 应用性能管理工具PinPoint介绍

    概述: 下面介绍一个开源的 APM (Application Performance Management/应用性能管理)工具 - Pinpoint.一个分布式事务跟踪系统的平台,思路基于google ...