一 介绍

Scrapy一个开源和协作的框架,其最初是为了页面抓取 (更确切来说, 网络抓取 )所设计的,使用它可以以快速、简单、可扩展的方式从网站中提取所需的数据。但目前Scrapy的用途十分广泛,可用于如数据挖掘、监测和自动化测试等领域,也可以应用在获取API所返回的数据(例如 Amazon Associates Web Services ) 或者通用的网络爬虫。

Scrapy 是基于twisted框架开发而来,twisted是一个流行的事件驱动的python网络框架。因此Scrapy使用了一种非阻塞(又名异步)的代码来实现并发。整体架构大致如下

The data flow in Scrapy is controlled by the execution engine, and goes like this:

  1. The Engine gets the initial Requests to crawl from the Spider.
  2. The Engine schedules the Requests in the Scheduler and asks for the next Requests to crawl.
  3. The Scheduler returns the next Requests to the Engine.
  4. The Engine sends the Requests to the Downloader, passing through the Downloader Middlewares (see process_request()).
  5. Once the page finishes downloading the Downloader generates a Response (with that page) and sends it to the Engine, passing through the Downloader Middlewares (see process_response()).
  6. The Engine receives the Response from the Downloader and sends it to the Spider for processing, passing through the Spider Middleware (see process_spider_input()).
  7. The Spider processes the Response and returns scraped items and new Requests (to follow) to the Engine, passing through the Spider Middleware (see process_spider_output()).
  8. The Engine sends processed items to Item Pipelines, then send processed Requests to the Scheduler and asks for possible next Requests to crawl.
  9. The process repeats (from step 1) until there are no more requests from the Scheduler.

Components:

  1. 引擎(EGINE)

    引擎负责控制系统所有组件之间的数据流,并在某些动作发生时触发事件。有关详细信息,请参见上面的数据流部分。

  2. 调度器(SCHEDULER)
    用来接受引擎发过来的请求, 压入队列中, 并在引擎再次请求的时候返回. 可以想像成一个URL的优先级队列, 由它来决定下一个要抓取的网址是什么, 同时去除重复的网址
  3. 下载器(DOWLOADER)
    用于下载网页内容, 并将网页内容返回给EGINE,下载器是建立在twisted这个高效的异步模型上的
  4. 爬虫(SPIDERS)
    SPIDERS是开发人员自定义的类,用来解析responses,并且提取items,或者发送新的请求
  5. 项目管道(ITEM PIPLINES)
    在items被提取后负责处理它们,主要包括清理、验证、持久化(比如存到数据库)等操作
  6. 下载器中间件(Downloader Middlewares)
    位于Scrapy引擎和下载器之间,主要用来处理从EGINE传到DOWLOADER的请求request,已经从DOWNLOADER传到EGINE的响应response,你可用该中间件做以下几件事
    1. process a request just before it is sent to the Downloader (i.e. right before Scrapy sends the request to the website);
    2. change received response before passing it to a spider;
    3. send a new Request instead of passing received response to a spider;
    4. pass response to a spider without fetching a web page;
    5. silently drop some requests.
  7. 爬虫中间件(Spider Middlewares)
    位于EGINE和SPIDERS之间,主要工作是处理SPIDERS的输入(即responses)和输出(即requests)

官网链接:https://docs.scrapy.org/en/latest/topics/architecture.html

二 安装

#Windows平台
1、pip3 install wheel #安装后,便支持通过wheel文件安装软件,wheel文件官网:https://www.lfd.uci.edu/~gohlke/pythonlibs
3、pip3 install lxml
4、pip3 install pyopenssl
5、下载并安装pywin32:https://sourceforge.net/projects/pywin32/files/pywin32/
6、下载twisted的wheel文件:http://www.lfd.uci.edu/~gohlke/pythonlibs/#twisted
7、执行pip3 install 下载目录\Twisted-17.9.0-cp36-cp36m-win_amd64.whl
8、pip3 install scrapy #Linux平台
1、pip3 install scrapy

三 命令行工具

#1 查看帮助
scrapy -h
scrapy <command> -h #2 有两种命令:其中Project-only必须切到项目文件夹下才能执行,而Global的命令则不需要
Global commands:
startproject #创建项目
genspider #创建爬虫程序
settings #如果是在项目目录下,则得到的是该项目的配置
runspider #运行一个独立的python文件,不必创建项目
shell #scrapy shell url地址 在交互式调试,如选择器规则正确与否
fetch #独立于程单纯地爬取一个页面,可以拿到请求头
view #下载完毕后直接弹出浏览器,以此可以分辨出哪些数据是ajax请求
version #scrapy version 查看scrapy的版本,scrapy version -v查看scrapy依赖库的版本
Project-only commands:
crawl #运行爬虫,必须创建项目才行,确保配置文件中ROBOTSTXT_OBEY = False
check #检测项目中有无语法错误
list #列出项目中所包含的爬虫名
edit #编辑器,一般不用
parse #scrapy parse url地址 --callback 回调函数 #以此可以验证我们的回调函数是否正确
bench #scrapy bentch压力测试 #3 官网链接
https://docs.scrapy.org/en/latest/topics/commands.html
#1、执行全局命令:请确保不在某个项目的目录下,排除受该项目配置的影响
scrapy startproject MyProject cd MyProject
scrapy genspider baidu www.baidu.com scrapy settings --get XXX #如果切换到项目目录下,看到的则是该项目的配置 scrapy runspider baidu.py scrapy shell https://www.baidu.com
response
response.status
response.body
view(response) scrapy view https://www.taobao.com #如果页面显示内容不全,不全的内容则是ajax请求实现的,以此快速定位问题 scrapy fetch --nolog --headers https://www.taobao.com scrapy version #scrapy的版本 scrapy version -v #依赖库的版本 #2、执行项目命令:切到项目目录下
scrapy crawl baidu
scrapy check
scrapy list
scrapy parse http://quotes.toscrape.com/ --callback parse
scrapy bench

示范用法

四 项目结构以及爬虫应用简介

project_name/
scrapy.cfg
project_name/
__init__.py
items.py
pipelines.py
settings.py
spiders/
__init__.py
爬虫1.py
爬虫2.py
爬虫3.py

文件说明:

  • scrapy.cfg  项目的主配置信息,用来部署scrapy时使用,爬虫相关的配置信息在settings.py文件中。
  • items.py    设置数据存储模板,用于结构化数据,如:Django的Model
  • pipelines    数据处理行为,如:一般结构化的数据持久化
  • settings.py 配置文件,如:递归的层数、并发数,延迟下载等。强调:配置文件的选项必须大写否则视为无效,正确写法USER_AGENT='xxxx'
  • spiders      爬虫目录,如:创建文件,编写爬虫规则

注意:一般创建爬虫文件时,以网站域名命名

#在项目目录下新建:entrypoint.py
from scrapy.cmdline import execute
execute(['scrapy', 'crawl', 'xiaohua'])

默认只能在cmd中执行爬虫,如果想在pycharm中执行需要做

import sys,os
sys.stdout=io.TextIOWrapper(sys.stdout.buffer,encoding='gb18030')

关于windows编码

五 Spiders

1、介绍

#1、Spiders是由一系列类(定义了一个网址或一组网址将被爬取)组成,具体包括如何执行爬取任务并且如何从页面中提取结构化的数据。

#2、换句话说,Spiders是你为了一个特定的网址或一组网址自定义爬取和解析页面行为的地方

2、Spiders会循环做如下事情

#1、生成初始的Requests来爬取第一个URLS,并且标识一个回调函数
第一个请求定义在start_requests()方法内默认从start_urls列表中获得url地址来生成Request请求,默认的回调函数是parse方法。回调函数在下载完成返回response时自动触发 #2、在回调函数中,解析response并且返回值
返回值可以4种:
包含解析数据的字典
Item对象
新的Request对象(新的Requests也需要指定一个回调函数)
或者是可迭代对象(包含Items或Request) #3、在回调函数中解析页面内容
通常使用Scrapy自带的Selectors,但很明显你也可以使用Beutifulsoup,lxml或其他你爱用啥用啥。 #4、最后,针对返回的Items对象将会被持久化到数据库
通过Item Pipeline组件存到数据库:https://docs.scrapy.org/en/latest/topics/item-pipeline.html#topics-item-pipeline)
或者导出到不同的文件(通过Feed exports:https://docs.scrapy.org/en/latest/topics/feed-exports.html#topics-feed-exports)

3、Spiders总共提供了五种类:

#1、scrapy.spiders.Spider #scrapy.Spider等同于scrapy.spiders.Spider
#2、scrapy.spiders.CrawlSpider
#3、scrapy.spiders.XMLFeedSpider
#4、scrapy.spiders.CSVFeedSpider
#5、scrapy.spiders.SitemapSpider

4、导入使用

# -*- coding: utf-8 -*-
import scrapy
from scrapy.spiders import Spider,CrawlSpider,XMLFeedSpider,CSVFeedSpider,SitemapSpider class AmazonSpider(scrapy.Spider): #自定义类,继承Spiders提供的基类
name = 'amazon'
allowed_domains = ['www.amazon.cn']
start_urls = ['http://www.amazon.cn/'] def parse(self, response):
pass

5、class scrapy.spiders.Spider

这是最简单的spider类,任何其他的spider类都需要继承它(包含你自己定义的)。

该类不提供任何特殊的功能,它仅提供了一个默认的start_requests方法默认从start_urls中读取url地址发送requests请求,并且默认parse作为回调函数

class AmazonSpider(scrapy.Spider):
name = 'amazon' allowed_domains = ['www.amazon.cn'] start_urls = ['http://www.amazon.cn/'] custom_settings = {
'BOT_NAME' : 'Egon_Spider_Amazon',
'REQUEST_HEADERS' : {
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
'Accept-Language': 'en',
}
} def parse(self, response):
pass
#1、name = 'amazon'
定义爬虫名,scrapy会根据该值定位爬虫程序
所以它必须要有且必须唯一(In Python 2 this must be ASCII only.) #2、allowed_domains = ['www.amazon.cn']
定义允许爬取的域名,如果OffsiteMiddleware启动(默认就启动),
那么不属于该列表的域名及其子域名都不允许爬取
如果爬取的网址为:https://www.example.com/1.html,那就添加'example.com'到列表. #3、start_urls = ['http://www.amazon.cn/']
如果没有指定url,就从该列表中读取url来生成第一个请求 #4、custom_settings
值为一个字典,定义一些配置信息,在运行爬虫程序时,这些配置会覆盖项目级别的配置
所以custom_settings必须被定义成一个类属性,由于settings会在类实例化前被加载 #5、settings
通过self.settings['配置项的名字']可以访问settings.py中的配置,如果自己定义了custom_settings还是以自己的为准 #6、logger
日志名默认为spider的名字
self.logger.debug('=============>%s' %self.settings['BOT_NAME']) #5、crawler:了解
该属性必须被定义到类方法from_crawler中 #6、from_crawler(crawler, *args, **kwargs):了解
You probably won’t need to override this directly because the default implementation acts as a proxy to the __init__() method, calling it with the given arguments args and named arguments kwargs. #7、start_requests()
该方法用来发起第一个Requests请求,且必须返回一个可迭代的对象。它在爬虫程序打开时就被Scrapy调用,Scrapy只调用它一次。
默认从start_urls里取出每个url来生成Request(url, dont_filter=True) #针对参数dont_filter,请看自定义去重规则 如果你想要改变起始爬取的Requests,你就需要覆盖这个方法,例如你想要起始发送一个POST请求,如下
class MySpider(scrapy.Spider):
name = 'myspider' def start_requests(self):
return [scrapy.FormRequest("http://www.example.com/login",
formdata={'user': 'john', 'pass': 'secret'},
callback=self.logged_in)] def logged_in(self, response):
# here you would extract links to follow and return Requests for
# each of them, with another callback
pass #8、parse(response)
这是默认的回调函数,所有的回调函数必须返回an iterable of Request and/or dicts or Item objects. #9、log(message[, level, component]):了解
Wrapper that sends a log message through the Spider’s logger, kept for backwards compatibility. For more information see Logging from Spiders. #10、closed(reason)
爬虫程序结束时自动触发

定制scrapy.spider属性与方法详解

去重规则应该多个爬虫共享的,但凡一个爬虫爬取了,其他都不要爬了,实现方式如下

#方法一:
1、新增类属性
visited=set() #类属性 2、回调函数parse方法内:
def parse(self, response):
if response.url in self.visited:
return None
....... self.visited.add(response.url) #方法一改进:针对url可能过长,所以我们存放url的hash值
def parse(self, response):
url=md5(response.request.url)
if url in self.visited:
return None
....... self.visited.add(url) #方法二:Scrapy自带去重功能
配置文件:
DUPEFILTER_CLASS = 'scrapy.dupefilter.RFPDupeFilter' #默认的去重规则帮我们去重,去重规则在内存中
DUPEFILTER_DEBUG = False
JOBDIR = "保存范文记录的日志路径,如:/root/" # 最终路径为 /root/requests.seen,去重规则放文件中 scrapy自带去重规则默认为RFPDupeFilter,只需要我们指定
Request(...,dont_filter=False) ,如果dont_filter=True则告诉Scrapy这个URL不参与去重。 #方法三:
我们也可以仿照RFPDupeFilter自定义去重规则, from scrapy.dupefilter import RFPDupeFilter,看源码,仿照BaseDupeFilter #步骤一:在项目目录下自定义去重文件dup.py
class UrlFilter(object):
def __init__(self):
self.visited = set() #或者放到数据库 @classmethod
def from_settings(cls, settings):
return cls() def request_seen(self, request):
if request.url in self.visited:
return True
self.visited.add(request.url) def open(self): # can return deferred
pass def close(self, reason): # can return a deferred
pass def log(self, request, spider): # log that a request has been filtered
pass #步骤二:配置文件settings.py:
DUPEFILTER_CLASS = '项目名.dup.UrlFilter' # 源码分析:
from scrapy.core.scheduler import Scheduler
见Scheduler下的enqueue_request方法:self.df.request_seen(request)

去重规则:去除重复的url

#例一:
import scrapy class MySpider(scrapy.Spider):
name = 'example.com'
allowed_domains = ['example.com']
start_urls = [
'http://www.example.com/1.html',
'http://www.example.com/2.html',
'http://www.example.com/3.html',
] def parse(self, response):
self.logger.info('A response from %s just arrived!', response.url) #例二:一个回调函数返回多个Requests和Items
import scrapy class MySpider(scrapy.Spider):
name = 'example.com'
allowed_domains = ['example.com']
start_urls = [
'http://www.example.com/1.html',
'http://www.example.com/2.html',
'http://www.example.com/3.html',
] def parse(self, response):
for h3 in response.xpath('//h3').extract():
yield {"title": h3} for url in response.xpath('//a/@href').extract():
yield scrapy.Request(url, callback=self.parse) #例三:在start_requests()内直接指定起始爬取的urls,start_urls就没有用了, import scrapy
from myproject.items import MyItem class MySpider(scrapy.Spider):
name = 'example.com'
allowed_domains = ['example.com'] def start_requests(self):
yield scrapy.Request('http://www.example.com/1.html', self.parse)
yield scrapy.Request('http://www.example.com/2.html', self.parse)
yield scrapy.Request('http://www.example.com/3.html', self.parse) def parse(self, response):
for h3 in response.xpath('//h3').extract():
yield MyItem(title=h3) for url in response.xpath('//a/@href').extract():
yield scrapy.Request(url, callback=self.parse)

例子

我们可能需要在命令行为爬虫程序传递参数,比如传递初始的url,像这样
#命令行执行
scrapy crawl myspider -a category=electronics #在__init__方法中可以接收外部传进来的参数
import scrapy class MySpider(scrapy.Spider):
name = 'myspider' def __init__(self, category=None, *args, **kwargs):
super(MySpider, self).__init__(*args, **kwargs)
self.start_urls = ['http://www.example.com/categories/%s' % category]
#... #注意接收的参数全都是字符串,如果想要结构化的数据,你需要用类似json.loads的方法

参数传递

6、其他通用Spiders:https://docs.scrapy.org/en/latest/topics/spiders.html#generic-spiders

六 Selectors

#1 //与/
#2 text
#3、extract与extract_first:从selector对象中解出内容
#4、属性:xpath的属性加前缀@
#4、嵌套查找
#5、设置默认值
#4、按照属性查找
#5、按照属性模糊查找
#6、正则表达式
#7、xpath相对路径
#8、带变量的xpath
response.selector.css()
response.selector.xpath()
可简写为
response.css()
response.xpath() #1 //与/
response.xpath('//body/a/')#
response.css('div a::text') >>> response.xpath('//body/a') #开头的//代表从整篇文档中寻找,body之后的/代表body的儿子
[]
>>> response.xpath('//body//a') #开头的//代表从整篇文档中寻找,body之后的//代表body的子子孙孙
[<Selector xpath='//body//a' data='<a href="image1.html">Name: My image 1 <'>, <Selector xpath='//body//a' data='<a href="image2.html">Name: My image 2 <'>, <Selector xpath='//body//a' data='<a href="
image3.html">Name: My image 3 <'>, <Selector xpath='//body//a' data='<a href="image4.html">Name: My image 4 <'>, <Selector xpath='//body//a' data='<a href="image5.html">Name: My image 5 <'>] #2 text
>>> response.xpath('//body//a/text()')
>>> response.css('body a::text') #3、extract与extract_first:从selector对象中解出内容
>>> response.xpath('//div/a/text()').extract()
['Name: My image 1 ', 'Name: My image 2 ', 'Name: My image 3 ', 'Name: My image 4 ', 'Name: My image 5 ']
>>> response.css('div a::text').extract()
['Name: My image 1 ', 'Name: My image 2 ', 'Name: My image 3 ', 'Name: My image 4 ', 'Name: My image 5 '] >>> response.xpath('//div/a/text()').extract_first()
'Name: My image 1 '
>>> response.css('div a::text').extract_first()
'Name: My image 1 ' #4、属性:xpath的属性加前缀@
>>> response.xpath('//div/a/@href').extract_first()
'image1.html'
>>> response.css('div a::attr(href)').extract_first()
'image1.html' #4、嵌套查找
>>> response.xpath('//div').css('a').xpath('@href').extract_first()
'image1.html' #5、设置默认值
>>> response.xpath('//div[@id="xxx"]').extract_first(default="not found")
'not found' #4、按照属性查找
response.xpath('//div[@id="images"]/a[@href="image3.html"]/text()').extract()
response.css('#images a[@href="image3.html"]/text()').extract() #5、按照属性模糊查找
response.xpath('//a[contains(@href,"image")]/@href').extract()
response.css('a[href*="image"]::attr(href)').extract() response.xpath('//a[contains(@href,"image")]/img/@src').extract()
response.css('a[href*="imag"] img::attr(src)').extract() response.xpath('//*[@href="image1.html"]')
response.css('*[href="image1.html"]') #6、正则表达式
response.xpath('//a/text()').re(r'Name: (.*)')
response.xpath('//a/text()').re_first(r'Name: (.*)') #7、xpath相对路径
>>> res=response.xpath('//a[contains(@href,"3")]')[0]
>>> res.xpath('img')
[<Selector xpath='img' data='<img src="data:image3_thumb.jpg">'>]
>>> res.xpath('./img')
[<Selector xpath='./img' data='<img src="data:image3_thumb.jpg">'>]
>>> res.xpath('.//img')
[<Selector xpath='.//img' data='<img src="data:image3_thumb.jpg">'>]
>>> res.xpath('//img') #这就是从头开始扫描
[<Selector xpath='//img' data='<img src="data:image1_thumb.jpg">'>, <Selector xpath='//img' data='<img src="data:image2_thumb.jpg">'>, <Selector xpath='//img' data='<img src="data:image3_thumb.jpg">'>, <Selector xpa
th='//img' data='<img src="data:image4_thumb.jpg">'>, <Selector xpath='//img' data='<img src="data:image5_thumb.jpg">'>] #8、带变量的xpath
>>> response.xpath('//div[@id=$xxx]/a/text()',xxx='images').extract_first()
'Name: My image 1 '
>>> response.xpath('//div[count(a)=$yyy]/@id',yyy=5).extract_first() #求有5个a标签的div的id
'images'

https://docs.scrapy.org/en/latest/topics/selectors.html

七 Items

https://docs.scrapy.org/en/latest/topics/items.html

八 Item Pipeline

#一:可以写多个Pipeline类
#1、如果优先级高的Pipeline的process_item返回一个值或者None,会自动传给下一个pipline的process_item,
#2、如果只想让第一个Pipeline执行,那得让第一个pipline的process_item抛出异常raise DropItem() #3、可以用spider.name == '爬虫名' 来控制哪些爬虫用哪些pipeline 二:示范
from scrapy.exceptions import DropItem class CustomPipeline(object):
def __init__(self,v):
self.value = v @classmethod
def from_crawler(cls, crawler):
"""
Scrapy会先通过getattr判断我们是否自定义了from_crawler,有则调它来完
成实例化
"""
val = crawler.settings.getint('MMMM')
return cls(val) def open_spider(self,spider):
"""
爬虫刚启动时执行一次
"""
print('') def close_spider(self,spider):
"""
爬虫关闭时执行一次
"""
print('') def process_item(self, item, spider):
# 操作并进行持久化 # return表示会被后续的pipeline继续处理
return item # 表示将item丢弃,不会被后续pipeline处理
# raise DropItem()

自定义pipeline

#1、settings.py
HOST="127.0.0.1"
PORT=27017
USER="root"
PWD=""
DB="amazon"
TABLE="goods" ITEM_PIPELINES = {
'Amazon.pipelines.CustomPipeline': 200,
} #2、pipelines.py
class CustomPipeline(object):
def __init__(self,host,port,user,pwd,db,table):
self.host=host
self.port=port
self.user=user
self.pwd=pwd
self.db=db
self.table=table @classmethod
def from_crawler(cls, crawler):
"""
Scrapy会先通过getattr判断我们是否自定义了from_crawler,有则调它来完
成实例化
"""
HOST = crawler.settings.get('HOST')
PORT = crawler.settings.get('PORT')
USER = crawler.settings.get('USER')
PWD = crawler.settings.get('PWD')
DB = crawler.settings.get('DB')
TABLE = crawler.settings.get('TABLE')
return cls(HOST,PORT,USER,PWD,DB,TABLE) def open_spider(self,spider):
"""
爬虫刚启动时执行一次
"""
self.client = MongoClient('mongodb://%s:%s@%s:%s' %(self.user,self.pwd,self.host,self.port)) def close_spider(self,spider):
"""
爬虫关闭时执行一次
"""
self.client.close() def process_item(self, item, spider):
# 操作并进行持久化 self.client[self.db][self.table].save(dict(item))

示范

https://docs.scrapy.org/en/latest/topics/item-pipeline.html

九 Dowloader Middeware

下载中间件的用途
1、在process——request内,自定义下载,不用scrapy的下载
2、对请求进行二次加工,比如
设置请求头
设置cookie
添加代理
scrapy自带的代理组件:
from scrapy.downloadermiddlewares.httpproxy import HttpProxyMiddleware
from urllib.request import getproxies
class DownMiddleware1(object):
def process_request(self, request, spider):
"""
请求需要被下载时,经过所有下载器中间件的process_request调用
:param request:
:param spider:
:return:
None,继续后续中间件去下载;
Response对象,停止process_request的执行,开始执行process_response
Request对象,停止中间件的执行,将Request重新调度器
raise IgnoreRequest异常,停止process_request的执行,开始执行process_exception
"""
pass def process_response(self, request, response, spider):
"""
spider处理完成,返回时调用
:param response:
:param result:
:param spider:
:return:
Response 对象:转交给其他中间件process_response
Request 对象:停止中间件,request会被重新调度下载
raise IgnoreRequest 异常:调用Request.errback
"""
print('response1')
return response def process_exception(self, request, exception, spider):
"""
当下载处理器(download handler)或 process_request() (下载中间件)抛出异常
:param response:
:param exception:
:param spider:
:return:
None:继续交给后续中间件处理异常;
Response对象:停止后续process_exception方法
Request对象:停止中间件,request将会被重新调用下载
"""
return None

下载器中间件

#1、与middlewares.py同级目录下新建proxy_handle.py
import requests def get_proxy():
return requests.get("http://127.0.0.1:5010/get/").text def delete_proxy(proxy):
requests.get("http://127.0.0.1:5010/delete/?proxy={}".format(proxy)) #2、middlewares.py
from Amazon.proxy_handle import get_proxy,delete_proxy class DownMiddleware1(object):
def process_request(self, request, spider):
"""
请求需要被下载时,经过所有下载器中间件的process_request调用
:param request:
:param spider:
:return:
None,继续后续中间件去下载;
Response对象,停止process_request的执行,开始执行process_response
Request对象,停止中间件的执行,将Request重新调度器
raise IgnoreRequest异常,停止process_request的执行,开始执行process_exception
"""
proxy="http://" + get_proxy()
request.meta['download_timeout']=20
request.meta["proxy"] = proxy
print('为%s 添加代理%s ' % (request.url, proxy),end='')
print('元数据为',request.meta) def process_response(self, request, response, spider):
"""
spider处理完成,返回时调用
:param response:
:param result:
:param spider:
:return:
Response 对象:转交给其他中间件process_response
Request 对象:停止中间件,request会被重新调度下载
raise IgnoreRequest 异常:调用Request.errback
"""
print('返回状态吗',response.status)
return response def process_exception(self, request, exception, spider):
"""
当下载处理器(download handler)或 process_request() (下载中间件)抛出异常
:param response:
:param exception:
:param spider:
:return:
None:继续交给后续中间件处理异常;
Response对象:停止后续process_exception方法
Request对象:停止中间件,request将会被重新调用下载
"""
print('代理%s,访问%s出现异常:%s' %(request.meta['proxy'],request.url,exception))
import time
time.sleep(5)
delete_proxy(request.meta['proxy'].split("//")[-1])
request.meta['proxy']='http://'+get_proxy() return request

配置代理

十 Spider Middleware

class SpiderMiddleware(object):

    def process_spider_input(self,response, spider):
"""
下载完成,执行,然后交给parse处理
:param response:
:param spider:
:return:
"""
pass def process_spider_output(self,response, result, spider):
"""
spider处理完成,返回时调用
:param response:
:param result:
:param spider:
:return: 必须返回包含 Request 或 Item 对象的可迭代对象(iterable)
"""
return result def process_spider_exception(self,response, exception, spider):
"""
异常调用
:param response:
:param exception:
:param spider:
:return: None,继续交给后续中间件处理异常;含 Response 或 Item 的可迭代对象(iterable),交给调度器或pipeline
"""
return None def process_start_requests(self,start_requests, spider):
"""
爬虫启动时调用
:param start_requests:
:param spider:
:return: 包含 Request 对象的可迭代对象
"""
return start_requests

爬虫中间件

十一 自定义扩展

自定义扩展(与django的信号类似)
1、django的信号是django是预留的扩展,信号一旦被触发,相应的功能就会执行
2、scrapy自定义扩展的好处是可以在任意我们想要的位置添加功能,而其他组件中提供的功能只能在规定的位置执行
#1、在与settings同级目录下新建一个文件,文件名可以为extentions.py,内容如下
from scrapy import signals class MyExtension(object):
def __init__(self, value):
self.value = value @classmethod
def from_crawler(cls, crawler):
val = crawler.settings.getint('MMMM')
obj = cls(val) crawler.signals.connect(obj.spider_opened, signal=signals.spider_opened)
crawler.signals.connect(obj.spider_closed, signal=signals.spider_closed) return obj def spider_opened(self, spider):
print('=============>open') def spider_closed(self, spider):
print('=============>close') #2、配置生效
EXTENSIONS = {
"Amazon.extentions.MyExtension":200
}

十二 settings.py

# -*- coding: utf-8 -*-

# Scrapy settings for step8_king project
#
# For simplicity, this file contains only settings considered important or
# commonly used. You can find more settings consulting the documentation:
#
# http://doc.scrapy.org/en/latest/topics/settings.html
# http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html
# http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html # 1. 爬虫名称
BOT_NAME = 'step8_king' # 2. 爬虫应用路径
SPIDER_MODULES = ['step8_king.spiders']
NEWSPIDER_MODULE = 'step8_king.spiders' # Crawl responsibly by identifying yourself (and your website) on the user-agent
# 3. 客户端 user-agent请求头
# USER_AGENT = 'step8_king (+http://www.yourdomain.com)' # Obey robots.txt rules
# 4. 禁止爬虫配置
# ROBOTSTXT_OBEY = False # Configure maximum concurrent requests performed by Scrapy (default: 16)
# 5. 并发请求数
# CONCURRENT_REQUESTS = 4 # Configure a delay for requests for the same website (default: 0)
# See http://scrapy.readthedocs.org/en/latest/topics/settings.html#download-delay
# See also autothrottle settings and docs
# 6. 延迟下载秒数
# DOWNLOAD_DELAY = 2 # The download delay setting will honor only one of:
# 7. 单域名访问并发数,并且延迟下次秒数也应用在每个域名
# CONCURRENT_REQUESTS_PER_DOMAIN = 2
# 单IP访问并发数,如果有值则忽略:CONCURRENT_REQUESTS_PER_DOMAIN,并且延迟下次秒数也应用在每个IP
# CONCURRENT_REQUESTS_PER_IP = 3 # Disable cookies (enabled by default)
# 8. 是否支持cookie,cookiejar进行操作cookie
# COOKIES_ENABLED = True
# COOKIES_DEBUG = True # Disable Telnet Console (enabled by default)
# 9. Telnet用于查看当前爬虫的信息,操作爬虫等...
# 使用telnet ip port ,然后通过命令操作
# TELNETCONSOLE_ENABLED = True
# TELNETCONSOLE_HOST = '127.0.0.1'
# TELNETCONSOLE_PORT = [6023,] # 10. 默认请求头
# Override the default request headers:
# DEFAULT_REQUEST_HEADERS = {
# 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
# 'Accept-Language': 'en',
# } # Configure item pipelines
# See http://scrapy.readthedocs.org/en/latest/topics/item-pipeline.html
# 11. 定义pipeline处理请求
# ITEM_PIPELINES = {
# 'step8_king.pipelines.JsonPipeline': 700,
# 'step8_king.pipelines.FilePipeline': 500,
# } # 12. 自定义扩展,基于信号进行调用
# Enable or disable extensions
# See http://scrapy.readthedocs.org/en/latest/topics/extensions.html
# EXTENSIONS = {
# # 'step8_king.extensions.MyExtension': 500,
# } # 13. 爬虫允许的最大深度,可以通过meta查看当前深度;0表示无深度
# DEPTH_LIMIT = 3 # 14. 爬取时,0表示深度优先Lifo(默认);1表示广度优先FiFo # 后进先出,深度优先
# DEPTH_PRIORITY = 0
# SCHEDULER_DISK_QUEUE = 'scrapy.squeue.PickleLifoDiskQueue'
# SCHEDULER_MEMORY_QUEUE = 'scrapy.squeue.LifoMemoryQueue'
# 先进先出,广度优先 # DEPTH_PRIORITY = 1
# SCHEDULER_DISK_QUEUE = 'scrapy.squeue.PickleFifoDiskQueue'
# SCHEDULER_MEMORY_QUEUE = 'scrapy.squeue.FifoMemoryQueue' # 15. 调度器队列
# SCHEDULER = 'scrapy.core.scheduler.Scheduler'
# from scrapy.core.scheduler import Scheduler # 16. 访问URL去重
# DUPEFILTER_CLASS = 'step8_king.duplication.RepeatUrl' # Enable and configure the AutoThrottle extension (disabled by default)
# See http://doc.scrapy.org/en/latest/topics/autothrottle.html """
17. 自动限速算法
from scrapy.contrib.throttle import AutoThrottle
自动限速设置
1. 获取最小延迟 DOWNLOAD_DELAY
2. 获取最大延迟 AUTOTHROTTLE_MAX_DELAY
3. 设置初始下载延迟 AUTOTHROTTLE_START_DELAY
4. 当请求下载完成后,获取其"连接"时间 latency,即:请求连接到接受到响应头之间的时间
5. 用于计算的... AUTOTHROTTLE_TARGET_CONCURRENCY
target_delay = latency / self.target_concurrency
new_delay = (slot.delay + target_delay) / 2.0 # 表示上一次的延迟时间
new_delay = max(target_delay, new_delay)
new_delay = min(max(self.mindelay, new_delay), self.maxdelay)
slot.delay = new_delay
""" # 开始自动限速
# AUTOTHROTTLE_ENABLED = True
# The initial download delay
# 初始下载延迟
# AUTOTHROTTLE_START_DELAY = 5
# The maximum download delay to be set in case of high latencies
# 最大下载延迟
# AUTOTHROTTLE_MAX_DELAY = 10
# The average number of requests Scrapy should be sending in parallel to each remote server
# 平均每秒并发数
# AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0 # Enable showing throttling stats for every response received:
# 是否显示
# AUTOTHROTTLE_DEBUG = True # Enable and configure HTTP caching (disabled by default)
# See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings """
18. 启用缓存
目的用于将已经发送的请求或相应缓存下来,以便以后使用 from scrapy.downloadermiddlewares.httpcache import HttpCacheMiddleware
from scrapy.extensions.httpcache import DummyPolicy
from scrapy.extensions.httpcache import FilesystemCacheStorage
"""
# 是否启用缓存策略
# HTTPCACHE_ENABLED = True # 缓存策略:所有请求均缓存,下次在请求直接访问原来的缓存即可
# HTTPCACHE_POLICY = "scrapy.extensions.httpcache.DummyPolicy"
# 缓存策略:根据Http响应头:Cache-Control、Last-Modified 等进行缓存的策略
# HTTPCACHE_POLICY = "scrapy.extensions.httpcache.RFC2616Policy" # 缓存超时时间
# HTTPCACHE_EXPIRATION_SECS = 0 # 缓存保存路径
# HTTPCACHE_DIR = 'httpcache' # 缓存忽略的Http状态码
# HTTPCACHE_IGNORE_HTTP_CODES = [] # 缓存存储的插件
# HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage' """
19. 代理,需要在环境变量中设置
from scrapy.contrib.downloadermiddleware.httpproxy import HttpProxyMiddleware 方式一:使用默认
os.environ
{
http_proxy:http://root:woshiniba@192.168.11.11:9999/
https_proxy:http://192.168.11.11:9999/
}
方式二:使用自定义下载中间件 def to_bytes(text, encoding=None, errors='strict'):
if isinstance(text, bytes):
return text
if not isinstance(text, six.string_types):
raise TypeError('to_bytes must receive a unicode, str or bytes '
'object, got %s' % type(text).__name__)
if encoding is None:
encoding = 'utf-8'
return text.encode(encoding, errors) class ProxyMiddleware(object):
def process_request(self, request, spider):
PROXIES = [
{'ip_port': '111.11.228.75:80', 'user_pass': ''},
{'ip_port': '120.198.243.22:80', 'user_pass': ''},
{'ip_port': '111.8.60.9:8123', 'user_pass': ''},
{'ip_port': '101.71.27.120:80', 'user_pass': ''},
{'ip_port': '122.96.59.104:80', 'user_pass': ''},
{'ip_port': '122.224.249.122:8088', 'user_pass': ''},
]
proxy = random.choice(PROXIES)
if proxy['user_pass'] is not None:
request.meta['proxy'] = to_bytes("http://%s" % proxy['ip_port'])
encoded_user_pass = base64.encodestring(to_bytes(proxy['user_pass']))
request.headers['Proxy-Authorization'] = to_bytes('Basic ' + encoded_user_pass)
print "**************ProxyMiddleware have pass************" + proxy['ip_port']
else:
print "**************ProxyMiddleware no pass************" + proxy['ip_port']
request.meta['proxy'] = to_bytes("http://%s" % proxy['ip_port']) DOWNLOADER_MIDDLEWARES = {
'step8_king.middlewares.ProxyMiddleware': 500,
} """ """
20. Https访问
Https访问时有两种情况:
1. 要爬取网站使用的可信任证书(默认支持)
DOWNLOADER_HTTPCLIENTFACTORY = "scrapy.core.downloader.webclient.ScrapyHTTPClientFactory"
DOWNLOADER_CLIENTCONTEXTFACTORY = "scrapy.core.downloader.contextfactory.ScrapyClientContextFactory" 2. 要爬取网站使用的自定义证书
DOWNLOADER_HTTPCLIENTFACTORY = "scrapy.core.downloader.webclient.ScrapyHTTPClientFactory"
DOWNLOADER_CLIENTCONTEXTFACTORY = "step8_king.https.MySSLFactory" # https.py
from scrapy.core.downloader.contextfactory import ScrapyClientContextFactory
from twisted.internet.ssl import (optionsForClientTLS, CertificateOptions, PrivateCertificate) class MySSLFactory(ScrapyClientContextFactory):
def getCertificateOptions(self):
from OpenSSL import crypto
v1 = crypto.load_privatekey(crypto.FILETYPE_PEM, open('/Users/wupeiqi/client.key.unsecure', mode='r').read())
v2 = crypto.load_certificate(crypto.FILETYPE_PEM, open('/Users/wupeiqi/client.pem', mode='r').read())
return CertificateOptions(
privateKey=v1, # pKey对象
certificate=v2, # X509对象
verify=False,
method=getattr(self, 'method', getattr(self, '_ssl_method', None))
)
其他:
相关类
scrapy.core.downloader.handlers.http.HttpDownloadHandler
scrapy.core.downloader.webclient.ScrapyHTTPClientFactory
scrapy.core.downloader.contextfactory.ScrapyClientContextFactory
相关配置
DOWNLOADER_HTTPCLIENTFACTORY
DOWNLOADER_CLIENTCONTEXTFACTORY """ """
21. 爬虫中间件
class SpiderMiddleware(object): def process_spider_input(self,response, spider):
'''
下载完成,执行,然后交给parse处理
:param response:
:param spider:
:return:
'''
pass def process_spider_output(self,response, result, spider):
'''
spider处理完成,返回时调用
:param response:
:param result:
:param spider:
:return: 必须返回包含 Request 或 Item 对象的可迭代对象(iterable)
'''
return result def process_spider_exception(self,response, exception, spider):
'''
异常调用
:param response:
:param exception:
:param spider:
:return: None,继续交给后续中间件处理异常;含 Response 或 Item 的可迭代对象(iterable),交给调度器或pipeline
'''
return None def process_start_requests(self,start_requests, spider):
'''
爬虫启动时调用
:param start_requests:
:param spider:
:return: 包含 Request 对象的可迭代对象
'''
return start_requests 内置爬虫中间件:
'scrapy.contrib.spidermiddleware.httperror.HttpErrorMiddleware': 50,
'scrapy.contrib.spidermiddleware.offsite.OffsiteMiddleware': 500,
'scrapy.contrib.spidermiddleware.referer.RefererMiddleware': 700,
'scrapy.contrib.spidermiddleware.urllength.UrlLengthMiddleware': 800,
'scrapy.contrib.spidermiddleware.depth.DepthMiddleware': 900, """
# from scrapy.contrib.spidermiddleware.referer import RefererMiddleware
# Enable or disable spider middlewares
# See http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html
SPIDER_MIDDLEWARES = {
# 'step8_king.middlewares.SpiderMiddleware': 543,
} """
22. 下载中间件
class DownMiddleware1(object):
def process_request(self, request, spider):
'''
请求需要被下载时,经过所有下载器中间件的process_request调用
:param request:
:param spider:
:return:
None,继续后续中间件去下载;
Response对象,停止process_request的执行,开始执行process_response
Request对象,停止中间件的执行,将Request重新调度器
raise IgnoreRequest异常,停止process_request的执行,开始执行process_exception
'''
pass def process_response(self, request, response, spider):
'''
spider处理完成,返回时调用
:param response:
:param result:
:param spider:
:return:
Response 对象:转交给其他中间件process_response
Request 对象:停止中间件,request会被重新调度下载
raise IgnoreRequest 异常:调用Request.errback
'''
print('response1')
return response def process_exception(self, request, exception, spider):
'''
当下载处理器(download handler)或 process_request() (下载中间件)抛出异常
:param response:
:param exception:
:param spider:
:return:
None:继续交给后续中间件处理异常;
Response对象:停止后续process_exception方法
Request对象:停止中间件,request将会被重新调用下载
'''
return None 默认下载中间件
{
'scrapy.contrib.downloadermiddleware.robotstxt.RobotsTxtMiddleware': 100,
'scrapy.contrib.downloadermiddleware.httpauth.HttpAuthMiddleware': 300,
'scrapy.contrib.downloadermiddleware.downloadtimeout.DownloadTimeoutMiddleware': 350,
'scrapy.contrib.downloadermiddleware.useragent.UserAgentMiddleware': 400,
'scrapy.contrib.downloadermiddleware.retry.RetryMiddleware': 500,
'scrapy.contrib.downloadermiddleware.defaultheaders.DefaultHeadersMiddleware': 550,
'scrapy.contrib.downloadermiddleware.redirect.MetaRefreshMiddleware': 580,
'scrapy.contrib.downloadermiddleware.httpcompression.HttpCompressionMiddleware': 590,
'scrapy.contrib.downloadermiddleware.redirect.RedirectMiddleware': 600,
'scrapy.contrib.downloadermiddleware.cookies.CookiesMiddleware': 700,
'scrapy.contrib.downloadermiddleware.httpproxy.HttpProxyMiddleware': 750,
'scrapy.contrib.downloadermiddleware.chunked.ChunkedTransferMiddleware': 830,
'scrapy.contrib.downloadermiddleware.stats.DownloaderStats': 850,
'scrapy.contrib.downloadermiddleware.httpcache.HttpCacheMiddleware': 900,
} """
# from scrapy.contrib.downloadermiddleware.httpauth import HttpAuthMiddleware
# Enable or disable downloader middlewares
# See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html
# DOWNLOADER_MIDDLEWARES = {
# 'step8_king.middlewares.DownMiddleware1': 100,
# 'step8_king.middlewares.DownMiddleware2': 500,
# }

settings.py

scrapy爬虫框架介绍的更多相关文章

  1. golang学习笔记17 爬虫技术路线图,python,java,nodejs,go语言,scrapy主流框架介绍

    golang学习笔记17 爬虫技术路线图,python,java,nodejs,go语言,scrapy主流框架介绍 go语言爬虫框架:gocolly/colly,goquery,colly,chrom ...

  2. Python之Scrapy爬虫框架安装及简单使用

    题记:早已听闻python爬虫框架的大名.近些天学习了下其中的Scrapy爬虫框架,将自己理解的跟大家分享.有表述不当之处,望大神们斧正. 一.初窥Scrapy Scrapy是一个为了爬取网站数据,提 ...

  3. scrapy爬虫框架教程(二)-- 爬取豆瓣电影TOP250

    scrapy爬虫框架教程(二)-- 爬取豆瓣电影TOP250 前言 经过上一篇教程我们已经大致了解了Scrapy的基本情况,并写了一个简单的小demo.这次我会以爬取豆瓣电影TOP250为例进一步为大 ...

  4. Scrapy爬虫框架(实战篇)【Scrapy框架对接Splash抓取javaScript动态渲染页面】

    (1).前言 动态页面:HTML文档中的部分是由客户端运行JS脚本生成的,即服务器生成部分HTML文档内容,其余的再由客户端生成 静态页面:整个HTML文档是在服务器端生成的,即服务器生成好了,再发送 ...

  5. Python爬虫教程-31-创建 Scrapy 爬虫框架项目

    本篇是介绍在 Anaconda 环境下,创建 Scrapy 爬虫框架项目的步骤,且介绍比较详细 Python爬虫教程-31-创建 Scrapy 爬虫框架项目 首先说一下,本篇是在 Anaconda 环 ...

  6. Python爬虫教程-30-Scrapy 爬虫框架介绍

    从本篇开始学习 Scrapy 爬虫框架 Python爬虫教程-30-Scrapy 爬虫框架介绍 框架:框架就是对于相同的相似的部分,代码做到不出错,而我们就可以将注意力放到我们自己的部分了 常见爬虫框 ...

  7. 手把手教你如何新建scrapy爬虫框架的第一个项目(上)

    前几天给大家分享了如何在Windows下创建网络爬虫虚拟环境及如何安装Scrapy,还有Scrapy安装过程中常见的问题总结及其对应的解决方法,感兴趣的小伙伴可以戳链接进去查看.关于Scrapy的介绍 ...

  8. python3.7.1安装Scrapy爬虫框架

    python3.7.1安装Scrapy爬虫框架 环境:win7(64位), Python3.7.1(64位) 一.安装pyhthon 详见Python环境搭建:http://www.runoob.co ...

  9. scrapy爬虫框架教程(二)-- 爬取豆瓣电影

    前言 经过上一篇教程我们已经大致了解了Scrapy的基本情况,并写了一个简单的小demo.这次我会以爬取豆瓣电影TOP250为例进一步为大家讲解一个完整爬虫的流程. 工具和环境 语言:python 2 ...

随机推荐

  1. Python入门:认识变量和字符串

    几个月前,我开始学习个人形象管理,从发型.妆容.服饰到仪表仪态,都开始做全新改造,在塑造个人风格时,最基础的是先了解自己属于哪种风格,然后找到参考对象去模仿,可以是自己欣赏的人.明星或模特等,直至最后 ...

  2. Halcon 笔记1

    Halcon Example位置: C:\Users\Public\Documents\MVTec\HALCON-13.0\examples 安装位置:C:\Program Files\MVTec\H ...

  3. apache 部署web.py

    一.安装Mod_wsgi 1.先yum -y install httpd-devel,否则会提示没有apxs 2.如果在make时 wsgi报错apxs:Error: Command failed w ...

  4. [翻译]API Guides - Layouts

    官方文档地址:http://developer.android.com/guide/topics/ui/declaring-layout.html PS:API Guides里面的内容不免都简单些,翻 ...

  5. Debugger DataSet 调试时查看DataSet

    delphi  跟踪调试的时候查看DataSet数据记录 Ctrl+F7调试 增强工具DataSethttp://edn.embarcadero.com/article/40268 http://do ...

  6. 以太网帧,IP,TCP,UDP首部结构

    1.以太网帧的格式 以太网封装格式 2.IP报头格式 IP是TCP/IP协议簇中最为重要的协议.所有的TCP,UDP, ICMP和IGMP数据都以IP数据报格式传输.IP提供的是不可靠.无连接的协议. ...

  7. python的N个小功能(高斯模糊原理及实践)

    原理: 二维高斯函数 1)         为了计算权重矩阵,需要设定σ的值.假定σ=1.5,则模糊半径为1的权重矩阵如下: 2)         这9个点的权重总和等于0.4787147,如果只计算 ...

  8. 【bzoj2402】陶陶的难题II 分数规划+树链剖分+线段树+STL-vector+凸包+二分

    题目描述 输入 第一行包含一个正整数N,表示树中结点的个数.第二行包含N个正实数,第i个数表示xi (1<=xi<=10^5).第三行包含N个正实数,第i个数表示yi (1<=yi& ...

  9. python常用模块collections os random sys

    Python 模块(Module),是一个 Python 文件,以 .py 结尾,包含了 Python 对象定义和Python语句. 模块让你能够有逻辑地组织你的 Python 代码段. 把相关的代码 ...

  10. 【入门向】使用 MetaHook Plus 绘制 HUD

    MetaHook Plus 是一个GoldSrc引擎(就是的Half-Life.CS1.6的引擎)的客户端插件平台,它可以加载我们自己开发的DLL插件. 首先你需要安装一个 Visual Studio ...