Poor Akagi

Time Limit: 30000/15000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 131    Accepted Submission(s): 29

Problem Description
Akagi is not only good at basketball but also good at math. Recently, he got a sequence Ln from his teacher. Ln is defined as follow:

$$\Large L(n)=\begin{cases}

2 & \text{ if } n=0 \\ 

1 & \text{ if } n=1 \\ 

L(n-1)+L(n-2) & \text{ if } n>1 

\end{cases}$$

And Akagi’s teacher cherishes Agaki’s talent in mathematic. So he wants Agaki to spend more time studying math rather than playing basketball. So he decided to ask Agaki to solve a problem about Ln and promised that as soon as he solves this problem, he can
go to play basketball. And this problem is: 

Given N and K, you need to find \(\Large\sum\limits_{0}^{N}L_i^K\)



And Agaki needs your help.
 
Input
This problem contains multiple tests.

In the first line there’s one number T (1 ≤ T ≤ 20) which tells the total number of test cases. For each test case, there an integer N (0 ≤ N ≤ 10^18) and an integer K (1 ≤ K ≤ 100000) in a line.
 
Output
For each test case, you need to output the answer mod 1000000007 in a line.
 
Sample Input
3
3 1
2 2
4 3
 
Sample Output
10
14
443
 
Source
 

题目大意

求卢卡斯数的k次方的前n项和
卢卡斯数为L[0]=2,L[1]=1,L[n]=L[n-2]+L[n-1](n>=2)

题目思路
当时看到题还以为直接依据 zoj 3774 找出二次剩余…… 结果发现1e9+7不存在二次剩余
最后发现了一种非常巧妙的做法
直接依据卢卡斯数的通项公式 

则求和公式为




定义二次域


此时直接对二次域进行加、乘操作就可以(最后的结果为整数,故根号五不会存在在结果之中)

重载二次域的加号和乘号,定义二次域的高速幂运算。所有带入公式就可以。

=.=好像这一题的杭电的数据还没有修正
公比为一时直接返回n+1(可能带来溢出)居然AC了
然后正解依旧WA……

这里仅仅放正解代码
/**
**author : ahm001 **
**source : hdu 4959**
**time : 08/21/14 **
**type : math **
**/
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <ctime>
#include <cctype>
#include <cmath>
#include <string>
#include <cstring>
#include <stack>
#include <queue>
#include <list>
#include <vector>
#include <map>
#include <set> #define sqr(x) ((x)*(x))
#define LL long long
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
#define eps 1e-10
#define mod 1000000007 using namespace std; int cnt=0; typedef pair <LL,LL> qf;
qf operator + (qf a,qf b)
{
return make_pair((a.first+b.first)%mod,(a.second+b.second)%mod);
}
qf operator * (qf a,qf b)
{
// if ((((LL)a.first*(LL)b.first)%mod+((LL)a.second*(LL)b.second)%mod*5ll)%mod<0)
// printf("%d %d %d %d\n",a.first,a.second,b.first,b.second);
if (a.first<0) a.first+=mod;
if (b.first<0) b.first+=mod;
if (a.second<0) a.second+=mod;
if (b.second<0) b.second+=mod;
return make_pair((((LL)a.first*(LL)b.first)%mod+((LL)a.second*(LL)b.second)%mod*5ll)%mod,
(((LL)a.first*(LL)b.second)%mod+((LL)a.second*(LL)b.first)%mod)%mod);
} qf pow(qf a, LL x)
{
qf res(1,0);
qf multi=a;
while (x)
{
if (x&1)
{
res=res*multi;
}
multi=multi*multi;
x/=2;
}
return res;
}
LL pow(LL a,LL b)
{
LL res=1;
LL multi=a;
while (b)
{
if (b&1)
{
res=res*multi%mod;
}
multi=multi*multi%mod;
b/=2;
}
return res;
}
qf acce(qf a,LL b)
{
qf ans=make_pair(1,0);
// if (a==ans) return make_pair(b+1,0);//这条语句去掉后AC了。可是n+1不取模将会造成后面的结果爆掉
qf powe=a;
qf sum=a;
qf multi=make_pair(1,0);
while (b)
{
if (b&1)
{
ans=ans+(multi*sum);
multi=multi*powe;
}
sum=sum*(powe+make_pair(1,0));
powe=powe*powe;
b/=2;
}
return ans;
}
LL inv[100005];
qf r1[100005],r2[100005]; void egcd (LL a,LL b,LL &x,LL &y)
{
if (b==0)
{
x=1,y=0;
return ;
}
egcd(b,a%b,x,y);
LL t=x;
x=y;y=t-a/b*y;
}
int main()
{
LL x,y;
for (LL i=1;i<=100000;i++)
{
egcd(i,mod,x,y);
x=(x+mod)%mod;
inv[i]=x;
} r1[0]=make_pair(1,0);
r2[0]=make_pair(1,0);
for (int i=1;i<=100000;i++)
{
r1[i]=r1[i-1]*make_pair(1,1);
r2[i]=r2[i-1]*make_pair(1,-1);
} int T;
scanf("%d",&T); while (T--)
{
cnt=0;
LL n,m;
scanf("%I64d%I64d",&n,&m);
// n=1e18;
// m=1e5; qf ans=make_pair(0,0);
LL Ca=1;
LL v=pow(inv[2],m);
for (LL i=0;i<=m;i++)
{
// printf("%lld\n",Ca);
qf p(Ca,0);
qf tmp=r1[i]*r2[m-i]*make_pair(v,0);
tmp=acce(tmp,n);
tmp=tmp*p;
ans=ans+tmp;
Ca=Ca*(m-i)%mod;
Ca=Ca*inv[i+1]%mod;
}
LL aa=(LL)ans.first;
printf("%I64d\n",aa);
// printf("%d %d \n",ans.first,ans.second);
// printf("%d\n",cnt);
}
return 0;
}

[hdu 4959]Poor Akagi 数论(卢卡斯数,二次域运算,等比数列求和)的更多相关文章

  1. hdu 1568 (log取对数 / Fib数通项公式)

    hdu 1568 (log取对数 / Fib数通项公式) 2007年到来了.经过2006年一年的修炼,数学神童zouyu终于把0到100000000的Fibonacci数列 (f[0]=0,f[1]= ...

  2. Least Common Multiple (HDU - 1019) 【简单数论】【LCM】【欧几里得辗转相除法】

    Least Common Multiple (HDU - 1019) [简单数论][LCM][欧几里得辗转相除法] 标签: 入门讲座题解 数论 题目描述 The least common multip ...

  3. 七夕节 (HDU - 1215) 【简单数论】【找因数】

    七夕节 (HDU - 1215) [简单数论][找因数] 标签: 入门讲座题解 数论 题目描述 七夕节那天,月老来到数字王国,他在城门上贴了一张告示,并且和数字王国的人们说:"你们想知道你们 ...

  4. hdu 5919 主席树(区间不同数的个数 + 区间第k大)

    Sequence II Time Limit: 9000/4500 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Tot ...

  5. HDU 1005 Number Sequence(数论)

    HDU 1005 Number Sequence(数论) Problem Description: A number sequence is defined as follows:f(1) = 1, ...

  6. hdu 4803 Poor Warehouse Keeper(贪心+数学)

    版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/u011328934/article/details/26005267 题目链接:hdu 4803 P ...

  7. HDU 4952 Poor Mitsui(贪心)

    HDU 4957 Poor Mitsui pid=4957" style="">题目链接 思路:利用相邻交换法去贪心就可以.注意容积为0的情况,这是个坑点 代码: ...

  8. HDU 1074 Doing Homework (动态规划,位运算)

    HDU 1074 Doing Homework (动态规划,位运算) Description Ignatius has just come back school from the 30th ACM/ ...

  9. C语言 · 数的运算

    算法提高 数的运算   时间限制:1.0s   内存限制:512.0MB      输入一个正整数(范围[1..10000]),打印其平方(不保留小数位).平方根.倒数.(用指针实现,保留2位小数,输 ...

随机推荐

  1. 【原创】Eclipse导入Android项目报错解决

    1.点击报错的项目--->右键--->Properties--->选择Android--->将Project Build Target选择其一勾上-->Is Librar ...

  2. 升/降压转换器 (Buck-boost)

    升/降压转换器 (Buck-boost) 当输入电压是变动的,有时比输出电压高.有时却比较低时(例如放电中的电池),升/降压转换器 (Buck-boost) 是最佳的电源解决方案. 升/降压转换器 ( ...

  3. DLL Dynamic-Link Library Search Order

    http://msdn.microsoft.com/en-us/library/windows/desktop/ms682586(v=vs.85).aspx A system can contain ...

  4. Percona-Toolkit学习之安装和配置

    http://blog.chinaunix.net/uid-26446098-id-3390779.html

  5. ionic开发环境搭建之ios

    前言 公司在做完ionic androud版后就开始做ios版,虽然ios的坑我觉得比起androud少了很多,但是作为第一次接触ios的我来说,环境实在太麻烦,从搭环境到打包一个正式版的ios ap ...

  6. redis中文API

    1.学习文档地址:http://www.redisdoc.com/en/latest/index.html 2.redis中文API REDIS所有的命令 <<ABOUT LIST> ...

  7. iOS中 imageNamed方法 非常多图片占用大量内存问题

    当我们须要载入非常多图片(相冊)的时候我们通常会用[UIimage  imageNamed:imageName]; 实际上[UIimage  imageNamed:imageName]这种方法在图片使 ...

  8. HDU 3949 XOR 高斯消元

    题目大意:给定一个数组,求这些数组通过异或能得到的数中的第k小是多少 首先高斯消元求出线性基,然后将k依照二进制拆分就可以 注意当高斯消元结束后若末尾有0则第1小是0 特判一下然后k-- 然后HDU输 ...

  9. 如何配置通过Fiber Channel连接主机与存储

    在一台Windows Client上, 安装免费的Cisco Fabric Manager. 笔者安装的是Fabric Manager 5.0(7). 注意, 这台Windows Client上应该安 ...

  10. OkHttp 使用案例 文档翻译 MD

    Markdown版本笔记 我的GitHub首页 我的博客 我的微信 我的邮箱 MyAndroidBlogs baiqiantao baiqiantao bqt20094 baiqiantao@sina ...