U63006 导函数最小系数

题面

给出一个n次函数\(f(x)=a_{n}x^{n}+a_{n-1}x^{n-1}+...+a_{1}x+a_0\)的各项系数\(a_n,a_{n-1}...a_1,a_0\)

你的任务是求出它的导函数,然后从中删去k项,使得各项系数和最小。

格式

输入包括两行。

第一行包括一个整数\(n,k\)。

第二行n+1个整数\(a_n,a_{n-1}...a_1,a_0\)

输出包括一行,即所求的最小系数和。具体格式见样例

样例#1

输入

2 1
2 3 1

输出

3

解释

所求导函数为\(f(x)=4x+3\),删去4x后最优。

样例#2

输入

7 3
3 8 0 2 1 7 4 4

输出

15

解释

所求导函数为\(f(x)=21x^6+48x^5+8x^3+3x^2+14x+4\),删去\(21x^6,48x^5,14x\)后最优。

数据限制

规模 n k
50% \([1,20]\) \([0,n]\)
50% \([1,10000]\) \([0,n]\)
规模 \(a_i\)
20% \(0\)
80% \([-49,50]\)

分析

解法

#include<bits/stdc++.h>
using namespace std;
int n,k,a[10001];
int ans;
int main(){
cin>>n>>k;
for(int i=n;i>=0;i--){
cin>>a[i];
a[i]*=i;
}
sort(a+1,a+n+1);
for(int i=1;i<=n-k;i++){
ans+=a[i];
}
cout<<ans<<endl;
}

数据

[洛谷U63006]导函数最小系数的更多相关文章

  1. 洛谷P4126 [AHOI2009]最小割

    题目:洛谷P4126 [AHOI2009]最小割 思路: 结论题 在残余网络上跑tarjan求出所有SCC,记id[u]为点u所在SCC的编号.显然有id[s]!=id[t](否则s到t有通路,能继续 ...

  2. 【题解】洛谷P1313 [NOIP2011TG]计算系数(组合+二次项展开)

    洛谷P1313:https://www.luogu.org/problemnew/show/P1313 思路 本题就是考查二次项展开 根据定理有:(ax+by)k=∑ki=0Cik*aibk-ixiy ...

  3. 洛谷.4897.[模板]最小割树(Dinic)

    题目链接 最小割树模板.具体见:https://www.cnblogs.com/SovietPower/p/9734013.html. ISAP不知为啥T成0分了.. Dinic: //1566ms ...

  4. 【洛谷p1313】计算系数

    (%%%hmr) 计算系数[传送门] 算法呀那个标签: (越来越懒得写辽)(所以今天打算好好写一写) 首先(ax+by)k的计算需要用到二项式定理: 对于(x+y)k,有第r+1项的系数为:Tr+1= ...

  5. 【洛谷】P1313 计算系数(快速幂+杨辉三角)

    题目 题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别为 a ,b , ...

  6. 洛谷 P3199 [HNOI2009]最小圈

    P3199 [HNOI2009]最小圈 题目背景 如果你能提供题面或者题意简述,请直接在讨论区发帖,感谢你的贡献. 题目描述 对于一张有向图,要你求图中最小圈的平均值最小是多少,即若一个圈经过k个节点 ...

  7. 【洛谷P1730】最小密度路径

    题目大意:给定一个 N 个点,M 条边的有向图,现有 Q 个询问,每次询问 X 到 Y 的最小密度路径是多少.最小密度路径的定义是路径长度除以路径边数. 题解:利用矩阵乘法,可以预处理出从 X 到 Y ...

  8. 洛谷$P4126\ [AHOI2009]$最小割 图论

    正解:网络流+$tarjan$ 解题报告: 传送门$QwQ$ $umm$最小割的判定问题$QwQ$,因为并不会做是看的题解才会的,所以也没什么推导过程直接放结论趴$QwQ$ 首先跑个最大流,然后有. ...

  9. 洛谷P3199 [HNOI2009]最小圈(01分数规划)

    题意 题目链接 Sol 暴力01分数规划可过 标算应该是这个 #include<bits/stdc++.h> #define Pair pair<int, double> #d ...

随机推荐

  1. PageHelper中默认PageInfo成员变量

    以下是PageHelper中默认PageInfo的成员变量,方便以后自己使用 //当前页 private int pageNum; //每页的数量 private int pageSize; //当前 ...

  2. Java中的高精度整数和高精度小数

    在实际编码中,会遇到很多高精度的事例,比如,在计算金钱的时候就需要保留高精度小数,这样计算才不会有太大误差: 在下面的代码中,我们验证了,当两个float型的数字相加,得到的结果和我们的预期结果是有误 ...

  3. 转:在0~N(不包括N)范围内随机生成一个长度为M(M <= N)且内容不重复的数组

    1. 最朴素暴力的做法. void cal1() { , j = , num = ; int result[M]; result[] = rand() % N; //第一个肯定不重复, 直接加进去 ; ...

  4. ios极光推送快速集成教程

    内容中包含 base64string 图片造成字符过多,拒绝显示

  5. knockout 学习使用笔记----绑定map--双向绑定

    简单的方式,使用 knockout.mapping.js. 1.引入knockout.mapping.js. 2.声明模型 var model = { task:null, feedbacks:[], ...

  6. 28UDP

    UDP通信流程步骤: 服务端: 等待(被动)接收发送 1: 创建 socket:  socket() 2: 绑定端口:      bind() 3: 读取消息:      read() 4: 发送消息 ...

  7. 关于jQuery获得表单radio类型输入框的选中值

    var item=$("input[name='w1']checked").val(); 下面这句,问题解决(加上[type='radio']:): var item=$(&quo ...

  8. Docker+.Net Core 的那些事儿-2.创建Docker镜像

    1.从store.docker.com获取.net core镜像 docker pull microsoft/dotnet 2.创建一个.net core项目,并发布 在上篇文章结尾建立的工作目录下, ...

  9. centos配置jdk的环境变量

    1.首先呢,centos下的JDK环境配置分两种情况,一直是root用户级别的jdk配置,另一种是其他用户组级别的配置.这里讲解的是root用户级别的配置. 我们已经下载解压好了jdk的目录.如下 2 ...

  10. [原创]css中a标签去掉锚点文本下划线

    我对博客的认识是:记录问题,解决问题,分享知识.如果有轮子,我不需要造轮子. 1.问题解决方式: 设置属性:text-decoration:none; 2.更多属性参数参考 text-decorati ...