HDU 4549 M斐波那契数列(矩阵快速幂+费马小定理)
M斐波那契数列
Time Limit : 3000/1000ms (Java/Other) Memory Limit : 65535/32768K (Java/Other)
Total Submission(s) : 43 Accepted Submission(s) : 28
Font: Times New Roman | Verdana | Georgia
Font Size: ← →
Problem Description
F[0] = a
F[1] = b
F[n] = F[n-1] * F[n-2] ( n > 1 )
现在给出a, b, n,你能求出F[n]的值吗?
Input
每组数据占一行,包含3个整数a, b, n( 0 <= a, b, n <= 10^9 )
Output
Sample Input
0 1 0
6 10 2
Sample Output
0
60
Source
题解:
#include <iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int mod=;
long long a,b;
int n;
long long pow(long long a,long long b)
{
long long res=;
while(b)
{
if (b&) res=(res*a)%mod;
a=(a*a)%mod;
b>>=;
}
return res;
}
long long mul(int n)
{
long long t[][]={,,,};//相当于pow中的a
long long ans[][]={,,,};//存最后的结果
long long tmp[][]; // 临时的
while(n)
{
if (n&)
{
for(int i=;i<;i++)
for(int j=;j<;j++)
tmp[i][j]=ans[i][j],ans[i][j]=;
for(int i=;i<;i++)
for(int j=;j<;j++)
for(int k=;k<;k++)
ans[i][j]=(ans[i][j]+tmp[i][k]*t[k][j])%(mod-);
}
for(int i=;i<;i++)
for(int j=;j<;j++)
{ tmp[i][j]=t[i][j]; t[i][j]=;}
for(int i=;i<;i++)
for(int j=;j<;j++)
for(int k=;k<;k++)
t[i][j]=(t[i][j]+tmp[i][k]*tmp[k][j])%(mod-);
n>>=;
}
return (pow(a,ans[][])*pow(b,ans[][]))%mod;
}
int main()
{
while(~scanf("%lld%lld%d",&a,&b,&n))
{
if (n==) printf("%lld\n",a%mod);
else if (n==) printf("%lld\n",b%mod);
else printf("%lld\n",mul(n));
} return ;
}
HDU 4549 M斐波那契数列(矩阵快速幂+费马小定理)的更多相关文章
- hdu 4549 M斐波拉契 (矩阵快速幂 + 费马小定理)
Problem DescriptionM斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在 ...
- hdu 4549 M斐波那契数列 矩阵快速幂+欧拉定理
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) Problem ...
- hdu 4549 M斐波那契数列(快速幂 矩阵快速幂 费马小定理)
题目链接http://acm.hdu.edu.cn/showproblem.php?pid=4549: 题目是中文的很容易理解吧.可一开始我把题目看错了,这毛病哈哈. 一开始我看错题时,就用了一个快速 ...
- M斐波那契数列(矩阵快速幂+费马小定理)
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Sub ...
- HDU4549 M斐波那契数列 矩阵快速幂+欧拉函数+欧拉定理
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Sub ...
- 51nod1242 斐波那契数列 矩阵快速幂
1242 斐波那契数列的第N项 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 #include<stdio.h> #define mod 100000000 ...
- POJ3070 斐波那契数列 矩阵快速幂
题目链接:http://poj.org/problem?id=3070 题意就是让你求斐波那契数列,不过n非常大,只能用logn的矩阵快速幂来做了 刚学完矩阵快速幂刷的水题,POJ不能用万能头文件是真 ...
- hdu4549 M斐波那契数列 矩阵快速幂+快速幂
M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在给出a, b, n,你能求出F[n]的 ...
- 洛谷P1962 斐波那契数列(矩阵快速幂)
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...
随机推荐
- HDU - 4675 GCD of Sequence (莫比乌斯反演+组合数学)
题意:给出序列[a1..aN],整数M和k,求对1-M中的每个整数d,构建新的序列[b1...bN],使其满足: 1. \(1 \le bi \le M\) 2. \(gcd(b 1, b 2, -, ...
- git 常用的撤销操作
git 开发时的使用流程,从同事那里学习的, 第一步,先建立一个新的分支,可以在GITLAB或通过命令git checkout -b newbranch 或通过IDE插件 第二步,让项目切换到该分支, ...
- XPath Checker 和 firebug 插件使用
安装插件: 1.firebug 2.FirePath 3.xpath finder 4.XPath Checker XPath Checker 下载安装 https://addons.mozilla. ...
- Please check registry access list (whitelist/blacklist)
https://blog.csdn.net/sprita1/article/details/51735566
- Docker-初始docker
一.什么是Docker Docker 在容器的基础上,进行了进一步的封装,从文件系统.网络互联到进程隔离等等,极大的简化了容器的创建和维护.使得 Docker 技术比虚拟机技术更为轻便.快捷. 下面的 ...
- Linux CentOS6环境下MySQL5.1升级至MySQL5.5版本过程
转载地址:http://www.laozuo.org/6145.html 老左今天有在帮朋友的博客搬迁到另外一台VPS主机环境,其环境采用的是LLSMP架构的,原先的服务器采用的是LNMP网站环境,其 ...
- linux挂载iso,u盘,分区,squashfs压缩文件
常见分区加载方法: mount挂载iso文件: #mkdir /mnt/iso1 #mount –o loop linuxsetup.iso /mnt/iso1 在linux 不需要虚拟光驱,就可以直 ...
- Jquery11 动画效果
学习要点: 1.显示.隐藏 2.滑动.卷动 3.淡入.淡出 4.自定义动画 5.列队动画方法 6.动画相关方法 7.动画全局属性 在以前很长一段时间里,网页上的各种特效还需要采用 flash 在进行. ...
- 对linux内核创建flash上的各分区源码进行分析
1.注意:内核源码版本为4.9 2.首先注意关键字符串"partitions found on MTD device 这句话在drivers/mtd/mtdpart.c的parse_mtd_ ...
- think in java
1.public private protected