MR案例:输出/输入SequenceFile
SequenceFile文件是Hadoop用来存储二进制形式的key-value对而设计的一种平面文件(Flat File)。在SequenceFile文件中,每一个key-value对被看做是一条记录(Record),基于Record的压缩策略,SequenceFile文件支持三种压缩类型:
NONE: 对records不进行压缩; (组合1)
RECORD: 仅压缩每一个record中的value值(不包括key); (组合2)
BLOCK: 将一个block中的所有records(包括key)压缩在一起;(组合3)
package test0820; import java.io.IOException; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.SequenceFile.CompressionType;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.VLongWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat; public class Test0829 { public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
job.setJarByClass(Test0829.class); job.setMapperClass(WCMapper.class);
job.setReducerClass(WCReducer.class); job.setOutputKeyClass(Text.class);
job.setOutputValueClass(VLongWritable.class); // 设置输出类
job.setOutputFormatClass(SequenceFileOutputFormat.class); /**
* 设置sequecnfile的格式,对于sequencefile的输出格式,有多种组合方式,
* 从下面的模式中选择一种,并将其余的注释掉
*/
// 组合方式1:不压缩模式
SequenceFileOutputFormat.setOutputCompressionType(job, CompressionType.NONE); //组合方式2:record压缩模式,并指定采用的压缩方式 :默认、gzip压缩等
// SequenceFileOutputFormat.setOutputCompressionType(job,
// CompressionType.RECORD);
// SequenceFileOutputFormat.setOutputCompressorClass(job,
// DefaultCodec.class); //组合方式3:block压缩模式,并指定采用的压缩方式 :默认、gzip压缩等
// SequenceFileOutputFormat.setOutputCompressionType(job,
// CompressionType.BLOCK);
// SequenceFileOutputFormat.setOutputCompressorClass(job,
// DefaultCodec.class); FileInputFormat.addInputPaths(job, args[0]);
SequenceFileOutputFormat.setOutputPath(job, new Path(args[1])); job.waitForCompletion(true);
}
//map
public static class WCMapper extends
Mapper<LongWritable, Text, Text, VLongWritable> {
public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String[] split = value.toString().split(":",2);
if(split.length!=1){
String[] splited = split[1].split(",");
for(String s : splited){
context.write(new Text(s), new VLongWritable(1L));
}
}
}
}
//reduce
public static class WCReducer extends Reducer<Text, VLongWritable, Text, VLongWritable>{
@Override
protected void reduce(Text key, Iterable<VLongWritable> v2s, Context context)
throws IOException, InterruptedException { long sum=0; for(VLongWritable vl : v2s){
sum += vl.get();
}
context.write(key, new VLongWritable(sum));
}
}
}
MR输入SequenceFile
当输入文件格式是SequenceFile的时候,要使用SequenceFileInputformat类。由于SequenceFile都是以key和value的二进制形式存放的(注意hadoop类型的二进制的解释方式和原始二进制不一样,会多一些维护信息),所以在读取SequenceFile文件时必须预先知道key和value对应的hadoop类型。
对于上面代码产生的SequenceFile结果文件,以SequenceFileInputformat类进行读取。其中key为Text类型,value为VLongWritable类型。
package test0820; import java.io.IOException; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.VLongWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.SequenceFileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class SFInput02 {
public static void main(String[] args) throws Exception {
Job job = Job.getInstance(new Configuration());
job.setJarByClass(SFinput.class); job.setMapperClass(SFMapper.class);
job.setReducerClass(SFReducer.class); job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(VLongWritable.class); job.setOutputKeyClass(Text.class);
job.setOutputValueClass(VLongWritable.class); job.setInputFormatClass(SequenceFileInputFormat.class); SequenceFileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1])); job.waitForCompletion(true);
}
public static class SFMapper extends Mapper<Text, VLongWritable,Text, VLongWritable> {
public void map(Text key, VLongWritable value, Context context)
throws IOException, InterruptedException {
context.write(key, value);
} }
//reduce
public static class SFReducer extends Reducer<Text, VLongWritable,Text, VLongWritable>{
@Override
protected void reduce(Text key, Iterable<VLongWritable> v2s,Context context)
throws IOException, InterruptedException {
for(VLongWritable vl : v2s){
context.write(key, vl);
}
}
}
}
如若不清楚SequenceFile文件中key和value的类型,可以使用SequenceFileAsTextInputFormat类。它将SequenceFile的key和value都转化成Text对象传入map中。
package test0820; import java.io.IOException; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.SequenceFileAsTextInputFormat;
import org.apache.hadoop.mapreduce.lib.input.SequenceFileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class SFinput {
public static void main(String[] args) throws Exception {
Job job = Job.getInstance(new Configuration());
job.setJarByClass(SFinput.class); job.setMapperClass(SFMapper.class);
job.setReducerClass(SFReducer.class); job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class); job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class); job.setInputFormatClass(SequenceFileAsTextInputFormat.class); SequenceFileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1])); job.waitForCompletion(true);
}
public static class SFMapper extends Mapper<Text, Text,Text, Text> {
public void map(Text key, Text value, Context context)
throws IOException, InterruptedException {
context.write(key, value);
} }
//reduce
public static class SFReducer extends Reducer<Text, Text,Text,Text>{
@Override
protected void reduce(Text key, Iterable<Text> v2s,Context context)
throws IOException, InterruptedException {
for(Text text : v2s){
context.write(key, text);
}
}
}
}
最后还有一种sequencefileAsBinaryInputFormat 类,它将SequenceFile中的key和value都以原始二进制的形式封装在byteswritable对象中传给map,如何对二进制数据进行解释是map函数编写者的工作。
MR案例:输出/输入SequenceFile的更多相关文章
- MR案例:倒排索引 && MultipleInputs
本案例采用 MultipleInputs类 实现多路径输入的倒排索引.解读:MR多路径输入 package test0820; import java.io.IOException; import j ...
- MR案例:Reduce-Join
问题描述:两种类型输入文件:address(地址)和company(公司)进行一对多的关联查询,得到地址名(例如:Beijing)与公司名(例如:Beijing JD.Beijing Red Star ...
- MR案例:倒排索引
1.map阶段:将单词和URI组成Key值(如“MapReduce :1.txt”),将词频作为value. 利用MR框架自带的Map端排序,将同一文档的相同单词的词频组成列表,传递给Combine过 ...
- MR案例:小文件处理方案
HDFS被设计来存储大文件,而有时候会有大量的小文件生成,造成NameNode资源的浪费,同时也影响MapReduce的处理效率.有哪些方案可以合并这些小文件,或者提高处理小文件的效率呢? 1). 所 ...
- MR案例:CombineFileInputFormat
CombineFileInputFormat是一个抽象类.Hadoop提供了两个实现类CombineTextInputFormat和CombineSequenceFileInputFormat. 此案 ...
- 解读:MR多路径输入
对于在一个MR-Job中使用多路径作为输入文件,一般有三种方法: 1).多次调用,加载不同路径: import org.apache.hadoop.mapreduce.lib.input.FileIn ...
- MR案例:定制InputFormat
数据输入格式 InputFormat类用于描述MR作业的输入规范,主要功能:输入规范检查(比如输入文件目录的检查).对数据文件进行输入切分和从输入分块中将数据记录逐一读取出来.并转化为Map的输入键值 ...
- 【VB超简单入门】五、基本输出输入
之前讲了VB IDE的基本操作和概念,接下来要开始将VB语言的编程了. 程序最重要的部分是输出和输入,输入数据,经过计算机处理,再输出结果.本文将介绍两种最基本的输出输入方法,分别是Print.Msg ...
- Java基础(5)- 输出输入
输出输入 public class Input { public static void main (String[] args){ try { /** * 打开文件流进行读取 */ Scanner ...
随机推荐
- linux shell 脚本使用
定义变量 fileName=text.txt 变量名称fileName,变量名称text.txt 使用变量 $fileName 用美元符号$开头,后面加变量名称,即可使用变量 使用用户输入参数 打印第 ...
- 一个非常棒的jQuery 评分插件--好东西要分享
现在做网页已经不仅限于实现功能了,更多的是要实现功能的同时追求更加美观的实现.比如页面上让用户评分的功能,你完全可以放5个RdioButton让用户选择分数,也可以用DropDownList来实现,但 ...
- LeetCode题目_Reverse Integer
最近在LeetCode上做题,写点东西记录一下,虽然自己做的都是些很水的题目,但是重在练手. 题号7:Reverse Integer,题目描述: Reverse digits of an intege ...
- PDO 指南
简介 前面咱已经见过MySQLi了,现在咱一起来看看PDO类.PDO是PHP Data Objects的缩写,它被描述为“在PHP中访问数据库的轻量级,兼容性的接口”.尽管它的名字不咋好听,但PDO是 ...
- 1. testNG+Maven 环境搭建
一:使用的工具 : TestNG 6.9.10 Maven 3.5 IDEA 二:创建maven项目,在pom.xml添加依赖 <?xml version="1.0" enc ...
- 不再依赖A*,利用C++编写全新寻路算法
一,说在前面的话 大概在半年前,看见一到信息竞赛题:在任意方格阵中设置障碍物,确定起始点后,求这两点之间路径.当时觉得蛮有意思的,但是没有时间去做,今天花了两个小时来实现它.据说有一个更高级的寻路算法 ...
- Spark2.0机器学习系列之7: MLPC(多层神经网络)
Spark2.0 MLPC(多层神经网络分类器)算法概述 MultilayerPerceptronClassifier(MLPC)这是一个基于前馈神经网络的分类器,它是一种在输入层与输出层之间含有一层 ...
- Spring第七弹—依赖注入之注解方式注入及编码解析@Resource原理
注入依赖对象可以采用手工装配或自动装配,在实际应用中建议使用手工装配,因为自动装配会产生未知情况,开发人员无法预见最终的装配结果. 手工装配依赖对象 手工装配依赖对象,在这种方式中又有两种编 ...
- Java应用程序中System.out.println输出中文乱码
其实,解决办法比较简单,即:编译时指定编码为UTF-8,如: javac -encoding utf- HelloJava.java 这样,再运行时就不会出现乱码. 比较详细的内容可以参考:http: ...
- one hot coding -机器学习
机器学习 数据预处理之独热编码(One-Hot Encoding) 问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑一下的三个特征: ["male" ...