bzoj 3298: [USACO 2011Open]cow checkers -- 数学
3298: [USACO 2011Open]cow checkers
Time Limit: 10 Sec Memory Limit: 128 MB
Description
一天,Besssie准备和FJ挑战奶牛跳棋游戏。这个游戏上在一个M*N(1<=M<=1,000,000;1<=N<=1,000,000)的棋盘上,
这个棋盘上在(x,y)(0<=x棋盘的左下角是(0,0)坐标,棋盘的右上角是坐标(M-1,N-1)。
Bessie每次都是第一个移动棋子,然后Bessie与Fj轮流移动。每一轮可以做以下三种中的一种操作:
1)在同一行,将棋子从当前位置向左移动任意格;
2)在同一列,将棋子从当前位置向下移动任意格;
3)将棋子从当前位置向下移动k格再向左移动k格(k为正整数,且要满足移动后的棋子仍然在棋盘上)
第一个不能在棋盘上移动的人比赛算输(因为棋子处在(0,0)点)。
共有T个回合(1<=T<=1,000),每次给出一个新起始点的坐标(x,y),确定是谁赢。
Input
第1行:两个用空格隔开的整数M和N;
第2行:一个整数T;
第3到第T+2行:两个用空格隔开的整数x和y.
Output
第1到T行:包含“Farmer John”或者是“Bessie”,表示谁赢了这轮游戏。
Sample Input
1
1 1
Sample Output
HINT
分析必败点,可以发现,必败点的同一行,同一列,同一对角线上的点都是必胜点
所以可知,每一列都只有一个点,并且这些点沿对角线对称
然后就可以O(n) 递推求出每一列的必败点,然后直接回答即可
#include<map>
#include<cmath>
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define inf 1000000007
#define ll long long
#define N 1000000
inline int rd()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int a[N+],n,m,T;
int main()
{
a[]=;int tp=;
for(int i=;i<=N;i++)
{
if(a[i]) continue;
a[i]=a[tp]+i-tp+;tp=i;
if(a[i]<=N) a[a[i]]=i;
}
n=rd();m=rd();T=rd();
int x,y;
while(T--)
{
x=rd()+;y=rd()+;
if(a[x]==y||a[y]==x) puts("Farmer John");
else puts("Bessie");
}
return ;
}
bzoj 3298: [USACO 2011Open]cow checkers -- 数学的更多相关文章
- 3298: [USACO 2011Open]cow checkers
3298: [USACO 2011Open]cow checkers Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 65 Solved: 26[Su ...
- BZOJ3298: [USACO 2011Open]cow checkers(佐威夫博弈)
3298: [USACO 2011Open]cow checkers Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 195 Solved: 96[S ...
- 【bzoj3298】[USACO 2011Open]cow checkers(博弈论)
题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=3298 博弈论经典结论题,我也没什么好说的.matrix67大佬比我想得深入的多:捡石子 ...
- BZOJ3298[USACO 2011Open]cow checkers——威佐夫博弈
题目描述 一天,Besssie准备和FJ挑战奶牛跳棋游戏.这个游戏上在一个M*N的棋盘上, 这个棋盘上在(x,y)(0<=x棋盘的左下角是(0,0)坐标,棋盘的右上角是坐标(M-1,N-1). ...
- BZOJ3298: [USACO 2011Open]cow checkers 威佐夫博弈
Description 一天,Besssie准备和FJ挑战奶牛跳棋游戏.这个游戏上在一个M*N的棋盘上, 这个棋盘上在(x,y)(0<=x棋盘的左下角是(0,0)坐标,棋盘的右上角是坐标(M-1 ...
- [BZOJ 1652][USACO 06FEB]Treats for the Cows 题解(区间DP)
[BZOJ 1652][USACO 06FEB]Treats for the Cows Description FJ has purchased N (1 <= N <= 2000) yu ...
- [USACO11OPEN]奶牛跳棋Cow Checkers(博弈论)
题目描述 One day, Bessie decides to challenge Farmer John to a game of 'Cow Checkers'. The game is playe ...
- [bzoj 3048] [Usaco2013 Jan]Cow Lineup
[bzoj 3048] [Usaco2013 Jan]Cow Lineup Description 给你一个长度为n(1<=n<=100,000)的自然数数列,其中每一个数都小于等于10亿 ...
- LUOGU P3024 [USACO11OPEN]奶牛跳棋Cow Checkers
题目描述 One day, Bessie decides to challenge Farmer John to a game of ‘Cow Checkers’. The game is playe ...
随机推荐
- Sublime之插件的安装(二)
前不久的文章里面,有讲过关于sublime插件的具体的安装,这里就不多说了~ 在使用sublime进行打开html页面的时候,是不是经常右击-->view in brower,是不是用多了感觉很 ...
- 绿色的银行类cms管理系统模板——后台
链接:http://pan.baidu.com/s/1pK7Vu9X 密码:4cc5
- linux下C语言实现多线程通信—环形缓冲区,可用于生产者(producer)/消费者(consumer)【转】
转自:http://blog.chinaunix.net/uid-28458801-id-4262445.html 操作系统:ubuntu10.04 前言: 在嵌入式开发中,只要是带操作系统的 ...
- java获取weblogic应用运行路径
String url = TemplateBuilder(当前类).class.getClassLoader().getResource("").getPath(); String ...
- PHP laravel 5.0 Blade 模板引擎 Api使用备注
PHP laravel 5.0 Blade 模板引擎 Api使用备注 /** * PHP laravel 5.0 Blade 模板引擎 Api使用备注 **/ //子模版中开头,调用@extends( ...
- mongodb与mysql传统的关系数据库区别
转自:易百教程 MongoDB中的数据具有灵活的模式.文档在同一集合,但它们不需要具有相同的字段或结构集合,集合文档中的公共字段可以包含不同类型的数据. MongoDB中的数据具有灵活的模式.与SQL ...
- 数据库介绍及MySQL安装
阅读目录 一.数据库是什么? 二.数据库特点 三. 什么是数据库管理系统(DataBase Management System 简称DBMS) 四.数据库服务器.数据管理系统.数据库.表与记录的关系( ...
- js中的for循环
预定义: var arr=[22,33,12,34];//数组(特殊的对象) var obj={ //对象 name:"Jack", age:"99", sex ...
- 通过EPROCESS获取进程名
上一篇写自我保护时用到了,主要是不同版本的位置不同.找了一下,发现XP和win7的情况分别如下. WIN7 lkd> dt nt!_EPROCESS +0x000 Pcb : _KPROCESS ...
- JS函数学习
=============数学函数========== 1.Math.random()为取随机数0~1之间的:0可以取到,1取不到 alert(Math.random()); 2.Math.PI为3. ...