「HAOI2015」按位或
「HAOI2015」按位或
解题思路 :
这类期望题一眼 \(\text{Min-Max}\) 容斥,只需要稍微推一下如何求 \(E(minS)\) 即可。
= \frac{1}{1-\sum_{T \cap S = \emptyset}p_T} \\
= \frac{1}{1-\sum_{T \cap (U-S) = T}p_T} \\
= \frac{1}{1-\sum_{T \subseteq (U-S)}p_T}
\]
对 \(p\) 做莫比乌斯变换得到:
E(minS) = \frac{1}{1-p'_{(U-S)}}
\]
然后直接 \(\text{Min-Max}\) 容斥就做完了,总复杂度 \(O(n2^n)\)。
code
/*program by mangoyang*/
#include<bits/stdc++.h>
#define inf (0x7f7f7f7f)
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
typedef long long ll;
using namespace std;
template <class T>
inline void read(T &x){
int ch = 0, f = 0; x = 0;
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = 1;
for(; isdigit(ch); ch = getchar()) x = x * 10 + ch - 48;
if(f) x = -x;
}
const int N = 2000005;
const double eps = 1e-6;
double p[N], ans;
int cnt[N], n;
int main(){
read(n);
for(int i = 0; i < (1 << n); i++) scanf("%lf", &p[i]);
for(int i = 0; i < n; i++)
for(int s = 0; s < (1 << n); s++)
if((1 << i) & s) p[s] += p[s^(1<<i)], cnt[s]++;
for(int i = 0; i < n; i++)
if(1.0 - p[(1<<n)-(1<<i)-1] < eps) return puts("INF"), 0;
for(int s = 0; s < (1 << n); s++){
double res = 1.0 - p[(1<<n)-s-1];
if(res > eps) ans += (1.0 / res) * (cnt[s] & 1 ? 1.0 : -1.0);
}
printf("%.10lf", ans);
return 0;
}
「HAOI2015」按位或的更多相关文章
- LOJ#2127「HAOI2015」按位或
用$ Min-Max$容斥之后要推的东西少了好多 无耻的用实数快读抢了BZOJ.Luogu.LOJ三个$ OJ$的Rank 1 即将update:被STO TXC OTZ超了QAQ 题意:集合$ [0 ...
- 【LOJ】#2127. 「HAOI2015」按位或
题解 听说这是一道论文题orz \(\sum_{k = 1}^{\infty} k(p^{k} - p^{k - 1})\) 答案是这个多项式的第\(2^N - 1\)项的系数 我们反演一下,卷积变点 ...
- 【LOJ2127】「HAOI2015」按位或
题意 刚开始你有一个数字 \(0\),每一秒钟你会随机选择一个 \([0,2^n-1]\) 的数字,与你手上的数字进行或操作.选择数字 \(i\) 的概率是 \(p[i]\) . 问期望多少秒后,你手 ...
- loj#2128. 「HAOI2015」数字串拆分 矩阵乘法
目录 题目链接 题解 代码 题目链接 loj#2128. 「HAOI2015」数字串拆分 题解 \(f(s)\)对于\(f(i) = \sum_{j = i - m}^{i - 1}f(j)\) 这个 ...
- 「HAOI2015」「LuoguP3178」树上操作(树链剖分
题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所有点的点权都增 ...
- 【LOJ】#2128. 「HAOI2015」数字串拆分
题解 题中给的函数可以用矩阵快速幂递推 我们记一个数组dp[i](这个数组每个元素是一个矩阵)表示从1到i所有的数字经过拆分矩阵递推的加和 转移方法是 \(dp[i] = \sum_{j = 0}^{ ...
- 【LOJ】#2126. 「HAOI2015」数组游戏
题解 简单分析一下就知道\(\lfloor \frac{N}{i} \rfloor\)相同的\(i\)的\(sg\)函数相同 所以我们只要算\(\sqrt{n}\)个\(sg\)函数就好 算每一个\( ...
- 「HAOI2015」树上操作(非树剖)
题目链接(luogu) 看到标签::树链剖分,蒟蒻Sy开始发抖,不知所措,但其实,本题只需要一个恶心普通的操作就可以了!! 前提知识:欧拉序 首先我们知道dfs序,就是在dfs过程中,按访问顺序进行编 ...
- 「译」JUnit 5 系列:条件测试
原文地址:http://blog.codefx.org/libraries/junit-5-conditions/ 原文日期:08, May, 2016 译文首发:Linesh 的博客:「译」JUni ...
随机推荐
- 关于Cookie跨域的问题研究
Cookie是一个伟大的发明,它允许Web开发者保留他们的用户的登录状态.但是当你的站点有一个以上的域名时就会出现问题了.在Cookie规范上说,一个cookie只能用于一个域名,不能够发给其它的域名 ...
- DHTML中window的使用
window对象是对浏览器窗口进行操作的对象.以下列出一些常用的对象(三级为对象的方法.属性) |-navigator:是对浏览器信息进行操作的对象 |-history:包含用户浏览过的url信息 | ...
- Findbugs插件安装与使用
FindBugs 是由马里兰大学提供的一款开源 Java静态代码分析工具.FindBugs通过检查类文件或 JAR文件,将字节码与一组缺陷模式进行对比从而发现代码缺陷,完成静态代码分析.FindBug ...
- KS(Kolmogorov-Smirnov)(转)
来源:https://blog.csdn.net/u013421629/article/details/78217498 KS(Kolmogorov-Smirnov):KS用于模型风险区分能力进行评估 ...
- WPF之DataGrid--列的前台及后台实现
一.前台实现 在xaml里可以很轻松地实现一个如下图所示的DataGrid <StackPanel> <ComboBox Width="50" Horizonta ...
- windows下安装多个mysql
1.正常安装mysql5.1.33 安装服务名为mysql3306 安装目录d:\mysql5.1\3306 安装完成后,关闭服务 ① 复制安装文件 将默认安装目录C:\Documents and S ...
- AtCoder Non-decreasing(数学思维)
题目链接:https://abc081.contest.atcoder.jp/tasks/arc086_b 题目大意:有n个数,最多可以执行2*n次操作,每次可以选择将ai加到aj上,最终使得该序列满 ...
- HEVC代码记录(删除)
得到编码残差 TEncSearch.cpp 4543:rpcYuvResi->subtract( pcYuvOrg, pcYuvPred, 0, uiWidth );
- window下线程同步之(Event Objects(事件))
Event 方式是最具弹性的同步机制,因为他的状态完全由你去决定,不会像 Mutex 和 Semaphores 的状态会由类似:WaitForSingleObject 一类的函数的调用而改变,所以你可 ...
- 洛谷P1420 最长连号 题解
题目传送门 这道题我是打暴力的...(尴尬) 所以直接是O(N2)的时间,但好像没有炸,数据很水... #include<bits/stdc++.h> using namespace st ...