Polygon
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions:6633   Accepted: 2834

Description

Polygon is a game for one player that starts on a polygon with N vertices, like the one in Figure 1, where N=4. Each vertex is labelled with an integer and each edge is labelled with either the symbol + (addition) or the symbol * (product). The edges are numbered from 1 to N. 

On the first move, one of the edges is removed. Subsequent moves involve the following steps: 
�pick an edge E and the two vertices V1 and V2 that are linked by E; and 
�replace them by a new vertex, labelled with the result of performing the operation indicated in E on the labels of V1 and V2. 
The game ends when there are no more edges, and its score is the label of the single vertex remaining.

Consider the polygon of Figure 1. The player started by removing edge 3. After that, the player picked edge 1, then edge 4, and, finally, edge 2. The score is 0. 

Write a program that, given a polygon, computes the highest possible score and lists all the edges that, if removed on the first move, can lead to a game with that score. 

Input

Your program is to read from standard input. The input describes a polygon with N vertices. It contains two lines. On the first line is the number N. The second line contains the labels of edges 1, ..., N, interleaved with the vertices' labels (first that of the vertex between edges 1 and 2, then that of the vertex between edges 2 and 3, and so on, until that of the vertex between edges N and 1), all separated by one space. An edge label is either the letter t (representing +) or the letter x (representing *).

3 <= N <= 50 
For any sequence of moves, vertex labels are in the range [-32768,32767]. 

Output

Your program is to write to standard output. On the first line your program must write the highest score one can get for the input polygon. On the second line it must write the list of all edges that, if removed on the first move, can lead to a game with that score. Edges must be written in increasing order, separated by one space.

Sample Input

4
t -7 t 4 x 2 x 5

Sample Output

33
1 2

Source

题意:

给一个n个顶点n条边的多边形,顶点上有一个整数值,边上有一个字符表示+ 或者 *。首先删除一条边,然后每次对两个顶点进行合并,用一个顶点代替这两个顶点,顶点的值是这两个顶点运算的结果,运算符为连接这两个顶点的边。最后只剩下一个顶点,问这个顶点最大值会是多少,以及得到这个结果的删边方法。

思路:

删除了一条边后,就类似于石子合并(https://www.cnblogs.com/wyboooo/p/9757387.html)这道题了。

不同之处在于因为有负数和乘法的存在,最大值有可能是由两个最小值相乘得到的。因此需要同时记录最大值和最小值。【已经遇到好多有负数、乘法要记录最大值最小值的问题了,需要注意!】

最开始需要枚举删掉的边,一个好方法是,将原来的数组在末尾复制一遍。从1~n跑一遍成为枚举,最后找dp[i][i+n-1]的最大值就行了。

这种“任意选择一个位置断开,复制形成2倍长度的链”的方法,是解决DP中环形结构的常用手段之一。

 //#include <bits/stdc++.h>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<stdio.h>
#include<cstring>
#include<map> #define inf 0x3f3f3f3f
using namespace std;
typedef long long LL; int n;
const int maxn = ;
int num[maxn * ];
char op[maxn * ];
int dp[maxn * ][maxn * ][]; int main()
{
while(scanf("%d", &n) != EOF){ for(int i = ; i <= n; i++){
scanf(" %c %d", &op[i], &num[i]);
}
for(int i = n + ; i <= * n; i++){
op[i] = op[i - n];
num[i] = num[i - n];
}
for(int i = ; i <= n * ; i++){
dp[i][i][] = dp[i][i][] = num[i];
for(int j = i + ; j <= * n; j++){
dp[i][j][] = -inf;
dp[i][j][] = inf;
}
} for(int len = ; len <= n; len++){
for(int l = ; l <= * n - len + ; l++){
int r = l + len - ;
for(int k = l; k < r; k++){ int res1, res2;
if(op[k + ] == 't'){
res1 = dp[l][k][] + dp[k + ][r][];
res2 = dp[l][k][] + dp[k + ][r][];
}
else{
res1 = dp[l][k][] * dp[k + ][r][];
res2 = dp[l][k][] * dp[k + ][r][];
dp[l][r][] = max(dp[l][r][], dp[l][k][] * dp[k + ][r][]);
dp[l][r][] = min(dp[l][r][], dp[l][k][] * dp[k + ][r][]);
dp[l][r][] = min(dp[l][r][], dp[l][k][] * dp[k + ][r][]);
}
dp[l][r][] = max(dp[l][r][], res1);
dp[l][r][] = min(dp[l][r][], res2);
}
}
} int ans = -inf;
for(int i = ; i <= n; i++){
ans = max(dp[i][i + n - ][], ans);
}
printf("%d\n", ans);
bool flag = false;
for(int i = ; i <= n; i++){
if(dp[i][i + n - ][] != ans)continue;
if(flag){
printf(" ");
}
else{
flag = true;
}
printf("%d", i);
}
printf("\n");
}
return ;
}

poj1179 Polygon【区间DP】的更多相关文章

  1. POJ1179 Polygon 区间DP

    题目大意: 多边形游戏,有N个顶点的多边形,3 <= N <= 50 ,多边形有N条边,每个顶点中有一个数字(可正可负),每条边上或者是“+”号,或者是“*”号.边从1到N编号,首先选择一 ...

  2. POJ 1179 - Polygon - [区间DP]

    题目链接:http://poj.org/problem?id=1179 Time Limit: 1000MS Memory Limit: 10000K Description Polygon is a ...

  3. IOI1998 Polygon [区间dp]

    [IOI1998]Polygon 题意翻译 题目可能有些许修改,但大意一致 多边形是一个玩家在一个有n个顶点的多边形上的游戏,如图所示,其中n=4.每个顶点用整数标记,每个边用符号+(加)或符号*(乘 ...

  4. IOI 98 (POJ 1179)Polygon(区间DP)

    很容易想到枚举第一步切掉的边,然后再计算能够产生的最大值. 联想到区间DP,令dp[i][l][r]为第一步切掉第i条边后从第i个顶点起区间[l,r]能够生成的最大值是多少. 但是状态不好转移,因为操 ...

  5. poj1179多边形——区间DP

    题目:http://poj.org/problem?id=1179 区间DP,值得注意的是有负值,而且有乘法,因此可能会影响最大值: 注意memset中写-1仅仅是-1,-2才是一个很小的负数: 最后 ...

  6. 【IOI1998】Polygon 区间DP

    题意翻译 题目可能有些许修改,但大意一致 多边形是一个玩家在一个有n个顶点的多边形上的游戏,如图所示,其中n=4.每个顶点用整数标记,每个边用符号+(加)或符号*(乘积)标记. 第一步,删除其中一条边 ...

  7. [IOI1998] Polygon (区间dp,和石子合并很相似)

    题意: 给你一个多边形(可以看作n个顶点,n-1条边的图),每一条边上有一个符号(+号或者*号),这个多边形有n个顶点,每一个顶点有一个值 最初你可以把一条边删除掉,这个时候这就是一个n个顶点,n-2 ...

  8. 【POJ1179】Polygon 区间DP

    这道题是典型的环形石子归并模型,破环成链后时间复杂度为\(O(n^3)\) 不过,因为题目中所给的数字可能是负数,仅仅记录区间内合并之后的最大值并不满足动态规划的最优子结构性质.因此,还需要额外记录下 ...

  9. poj1179 环形+区间dp

    因为要用到模,所以左起点设置为0比较好 #include<iostream> #include<cstdio> #include<cstring> #define ...

  10. 「IOI1998」「LuoguP4342」Polygon(区间dp

    P4342 [IOI1998]Polygon - 洛谷 题意翻译 题目可能有些许修改,但大意一致 多边形是一个玩家在一个有n个顶点的多边形上的游戏,如图所示,其中n=4.每个顶点用整数标记,每个边用符 ...

随机推荐

  1. 开源项目AndroidUtil-採用Fragment实现TabHost

    原文出自:方杰|http://fangjie.sinaapp.com/?p=141 转载请注明出处 学习Android也有一段时间了.感觉大部分的Android应用都有非常多类似的组件,所以就打算做了 ...

  2. Nokia Imaging SDK

    Nokia Imaging SDK 目前为 beta 版本,是诺基亚在自己的图像应用中使用的技术同时提供给开发者 使用.这是一个运行在手机设备上处理图片数据的高效的类库.功能包括 JEPG 图片的编码 ...

  3. Pyhton 列表转字典

    1.一个list 2.两个list

  4. Java callback

    Java中的回调(callback)是很重要的一个概念,spring整合hibernate大量使用了这种技术. 究竟怎样才是回调呢? 这是网上最多见到的说明:     1.class   A,clas ...

  5. 华中农业大学校赛 I Catching Dogs

    Catching Dogs Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 1140  Solved: 298[Submit][Status][Web B ...

  6. 一款基于jQuery和CSS3炫酷3D旋转画廊特效插件

    这是一款效果炫酷的jQuery和CSS3 3D旋转画廊特效插件.该3D画廊插件可以通过前后导航按钮来切换图片,效果就像旋转木马一样.它还带有点击放大图片,显示图片标题和用键盘操作等功能. 在线预览   ...

  7. 为什么对一些矩阵做PCA得到的矩阵少一行?

    很多时候会出现把一个N*M的矩阵做pca(对M降维)之后却得到一个M*(M-1)矩阵这样的结果.之前都是数学推导得到这个结论,但是, 今天看到一个很形象的解释: Consider what PCA d ...

  8. gin入门

    Download and install it: $ go get github.com/gin-gonic/gin Import it in your code: import "gith ...

  9. 矩阵hash + KMP - UVA 12886 The Big Painting

    The Big Painting Problem's Link: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=88791 M ...

  10. ComBoFuzzySearch.js

    /** * combobox和combotree模糊查询 */(function () { //combobox可编辑,自定义模糊查询 $.fn.combobox.defaults.editable ...