题解

我们可以根据点积的定义,垂直于原点到给定点构成的直线作一条直线,从正无穷往下平移,第一个碰到的点就是答案

像什么,上凸壳哇

可是……动态维护上凸壳?

我们可以离线,计算每个点能造成贡献的一个询问区间[l,r]表示这个点在第l个询问和第r个询问之间存在,按照每个点的横坐标大小顺序插入线段树,我们就可以类似斜率优化构造出凸包

对于所有询问,我们可以给它们按极角排序,然后遍历线段树,如果按照极角排序,那么垂直于他们的直线斜率递减,最优点也右移

实现的方法就是一边遍历线段树,一边归并排序,每一层按照极角序遍历这个凸壳就好

代码

#include <iostream>
#include <cstdio>
#include <vector>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <map>
//#define ivorysi
#define pb push_back
#define space putchar(' ')
#define enter putchar('\n')
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define mo 974711
#define MAXN 200005
#define RG register
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {putchar('-');x = -x;}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
struct Point {
int64 x,y;
Point(){}
Point(int64 _x,int64 _y) {
x = _x;y = _y;
}
friend Point operator + (const Point &a,const Point &b) {
return Point(a.x + b.x,a.y + b.y);
}
friend Point operator - (const Point &a,const Point &b) {
return Point(a.x - b.x,a.y - b.y);
}
friend int64 operator * (const Point &a,const Point &b) {
return a.x * b.y - a.y * b.x;
}
friend int64 dot(const Point &a,const Point &b) {
return a.x * b.x + a.y * b.y;
}
friend bool operator < (const Point &a,const Point &b) {
return a.x < b.x;
}
};
struct Inode {
Point a;int l,r;
friend bool operator < (const Inode &s,const Inode &t) {
return s.a < t.a;
}
}Ins[MAXN];
struct Qnode {
Point a;int id;
}Qry[MAXN],tmp[MAXN];
vector<Point> tr[MAXN * 4];
int N,cntI,cntQ,st[MAXN * 4];
int64 ans[MAXN];
void Insert(int u,int L,int R,int l,int r,Point a) {
if(L == l && R == r) {
int s = tr[u].size() - 1;
while(s > 0) {
if((tr[u][s] - tr[u][s - 1]) * (a - tr[u][s - 1]) >= 0) {
tr[u].pop_back();
}
else break;
--s;
}
tr[u].pb(a);
return ;
}
int mid = (L + R) >> 1;
if(r <= mid) Insert(u << 1,L,mid,l,r,a);
else if(l > mid) Insert(u << 1 | 1,mid + 1,R,l,r,a);
else {
Insert(u << 1,L,mid,l,mid,a);
Insert(u << 1 | 1,mid + 1,R,mid + 1,r,a);
}
}
void Init() {
read(N);
int t,id;int64 x,y;
for(int i = 1 ; i <= N ; ++i) {
read(t);
if(t == 1) {
read(x);read(y);
Ins[++cntI] = (Inode){Point(x,y),cntQ + 1,-1};
}
else if(t == 3) {
read(x);read(y);++cntQ;
Qry[cntQ] = (Qnode){Point(x,y),cntQ};
}
else {
read(id);
Ins[id].r = cntQ;
}
}
for(int i = 1 ; i <= cntI ; ++i) {
if(Ins[i].r == -1) Ins[i].r = cntQ;
}
sort(Ins + 1,Ins + cntI + 1);
for(int i = 1 ; i <= cntI ; ++i) {
if(Ins[i].l <= Ins[i].r) {
Insert(1,1,cntQ,Ins[i].l,Ins[i].r,Ins[i].a);
}
}
}
void Solve(int u,int L,int R) {
int mid = (L + R) >> 1;
if(L != R) {
Solve(u << 1,L,mid);Solve(u << 1 | 1,mid + 1,R);
int tl = L,tr = mid + 1,p = L;
while(tl <= mid && tr <= R) {
if(Qry[tr].a * Qry[tl].a >= 0) tmp[p++] = Qry[tl++];
else tmp[p++] = Qry[tr++];
}
while(tl <= mid) tmp[p++] = Qry[tl++];
while(tr <= R) tmp[p++] = Qry[tr++];
for(int i = L ; i <= R ; ++i) Qry[i] = tmp[i];
}
int s = tr[u].size() - 1;
if(s != -1) {
for(int i = L ; i <= R ; ++i) {
while(st[u] < s) {
if(dot(tr[u][st[u]],Qry[i].a) <= dot(tr[u][st[u] + 1],Qry[i].a)) {
++st[u];
}
else break;
}
ans[Qry[i].id] = max(ans[Qry[i].id],dot(Qry[i].a,tr[u][st[u]]));
}
} }
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Init();
Solve(1,1,cntQ);
for(int i = 1 ; i <= cntQ ; ++i) out(ans[i]),enter;
return 0;
}

【BZOJ】4311: 向量(线段树分治板子题)的更多相关文章

  1. [BZOJ 4025]二分图(线段树分治+带边权并查集)

    [BZOJ 4025]二分图(线段树分治+带边权并查集) 题面 给出一个n个点m条边的图,每条边会在时间s到t出现,问每个时间的图是否为一个二分图 \(n,m,\max(t_i) \leq 10^5\ ...

  2. BZOJ.4184.shallot(线段树分治 线性基)

    BZOJ 裸的线段树分治+线性基,就是跑的巨慢_(:з」∠)_ . 不知道他们都写的什么=-= //41652kb 11920ms #include <map> #include < ...

  3. bzoj 4025 二分图——线段树分治+LCT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4025 线段树分治,用 LCT 维护链的长度即可.不过很慢. 正常(更快)的方法应该是线段树分 ...

  4. BZOJ 4311: 向量( 按时间分治 + 线段树 )

    离线, 然后按时间分治, 每个向量都有出现时间[l, r], 直接插入时间线段树(一个向量只会影响O(logN)数量级的线段树节点). 在线段树每个节点弄出凸壳然后二分. 时间复杂度O(Nlog^2N ...

  5. [线段树]HDU-1754板子题入门ver

    HDU-1754 线段树数组请开到四倍 众所周知数组开小会导致re tle wa等一系列问题orz 板子就是板子,数组从零开始或是从一开始都没什么问题,就是2*root+1还是2*root+2的问题. ...

  6. bzoj 4184 shallot——线段树分治+线性基

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4184 本来想了可持久化trie,不过空间是 nlogn (出一个节点的时候把 tot 复原就 ...

  7. loj#2312. 「HAOI2017」八纵八横(线性基 线段树分治)

    题意 题目链接 Sol 线性基+线段树分治板子题.. 调起来有点自闭.. #include<bits/stdc++.h> #define fi first #define se secon ...

  8. BZOJ 4025: 二分图 [线段树CDQ分治 并查集]

    4025: 二分图 题意:加入边,删除边,查询当前图是否为二分图 本来想练lct,然后发现了线段树分治的做法,感觉好厉害. lct做法的核心就是维护删除时间的最大生成树 首先口胡一个分块做法,和hno ...

  9. 【BZOJ2001】[HNOI2010]城市建设(CDQ分治,线段树分治)

    [BZOJ2001][HNOI2010]城市建设(CDQ分治,线段树分治) 题面 BZOJ 洛谷 题解 好神仙啊这题.原来想做一直不会做(然而YCB神仙早就切了),今天来怒写一发. 很明显这个玩意换种 ...

随机推荐

  1. python练习1--用户登入

    python版本为python3.51.要求 1)输入用户名密码 2)认证成功后显示欢迎信息 3)输错三次后锁定 2.需求分析 1)用户信息存储在文件中(login/config/user_login ...

  2. PlantUML类图

    PlantUML类图   雨客 2016-04-08 11:38:03 浏览796 评论0 摘要: 类之间的关系 PlantUML用下面的符号来表示类之间的关系: 泛化,Generalization: ...

  3. eclipse/myeclipse添加插件3种方式

    个人比较偏爱links的方式,以下方式eclipse/myeclipse均适合 1.links方式 在eclipse目录先新建links目录,新建一个xx.link(例如:android.link) ...

  4. OpenCV---对象测量

    一:获取图像的外接矩形boundingRect和几何距moments import cv2 as cv import numpy as np def measure_object(image): gr ...

  5. 洛谷 P2345 奶牛集会

    https://www.luogu.org/problem/show?pid=2345 题目描述 约翰的N 头奶牛每年都会参加“哞哞大会”.哞哞大会是奶牛界的盛事.集会上的活动很 多,比如堆干草,跨栅 ...

  6. 很好的脑洞题:dfs+暴力 Gym - 101128A Promotions

    http://codeforces.com/gym/101128 题目大意:给你一个a,b,e,p.有e个点,p条有向边,每条边为(x,y),表示x->y,每次我们都取出一个入度为0的,并且一次 ...

  7. 本地文件夹如何断开svn连接

    最近遇到一个问题,svn的项目down失败,一不小心点了删除准备重新上传,发现本地的文件已有svn源信息,提交更新均报再找不到此文件路径. 于是想着删除此文件夹的svn信息,经过一番百度,以下方法测试 ...

  8. 使用 XSLT 作为 HTML 的样式表

    简介 当听到样式表这个词时,您可能会想到 CSS 样式表.XSLT 样式表通常用于 XML 转换,比如在 Web 服务之间映射数据.因为 XSLT 非常适合此用途,所以创建了顶层元素 <styl ...

  9. 【BZOJ】3262: 陌上花开

    [题意]三维偏序,给定n个点(x,y,z),求每个点和(0,0,0)组成空间中的点数,有重点.1<=x,y,z<=2*10^5,1<=n<=10^5. [算法]CDQ分治+树状 ...

  10. 【BZOJ 1001】[BJOI2006]狼抓兔子(最大流)

    题目链接 最大流裸题,没什么好说吧,恰好点数多,考验网络流的效率,正好练\(Dinic\). #include <cstdio> #include <queue> #inclu ...