这是 meelo 原创的 IEEEXtreme极限编程大赛题解

Xtreme 10.0 - Always Be In Control

题目来源 第10届IEEE极限编程大赛

https://www.hackerrank.com/contests/ieeextreme-challenges/challenges/always-be-in-control

Engineers use a technique called "statistical process control" to manage and improve engineering processes. For example, suppose a manufacturing process is producing widgets of some sort and the diameter of a widget, measured in microns, is important to the ability to use that widget in a later assembly. Many things can affect the diameter of a widget (humidity, temperature, quality of raw materials, etc.), so there is going to be some variation in diameter from one set of widgets to the next. Statistical process control would sample the diameter of a widget over time to make sure that the variation is consistent.

One of the core techniques of statistical process control is a control chart, which is used to monitor some aspect of the process over time to see if the process is behaving consistently. A control chart plots the sampled statistic over time and includes upper and lower control limits that describe the variation in the data. Those control limits are called 3-sigma limits as they represent about three standard deviations away from the mean of the data. Here is an example control chart:

A process is considered to be "in control" with respect to a given variable if its variation is predictable. When analyzing a control chart, the process is out of control if any of the following occur:

  1. A single point falls outside the 3-sigma control limits.

  2. At least two out of three successive values fall on the same side of, and more than two sigma units away from, the center line.

  3. At least four out of five successive values fall on the same side of, and more than one sigma unit away from, the center line.

  4. At least eight successive values fall on the same side of the center line.

There are many ways to build control charts and selecting the right one depends on the type of data you have and the question you are trying to answer. For this problem, you are going to build a variation of an Xbar chart, in which we group the data into subgroups of n sequential values. For each subgroup, we compute ri, the range of the values, and Xi, the average of the values. (The range is the maximum value minus the minimum value in the subgroup). The control chart will be a plot of the raw data values (in order). The upper control limit (UCL), lower control limit (LCL), and the center line (CL) are computed as follows:

UCLX = Xave + ARave

LCLX = Xave - ARave

CLX = Xave

Where Xave is the average of the Xi values, Rave is the average of the range values, and A2 is a constant that depends on the size of the groups we created, as shown in the table below.

Size of group (n)      A2
2 1.880
3 1.023
4 0.729
5 0.577
6 0.483
7 0.419
8 0.373
9 0.337
10 0.308

Input Format

The first line of the input will be an integer between 1 and 20, inclusive, that is the number of test cases in the input.

Each test case will be specified by one line of space separated integers. The first will be x, 1 ≤ x ≤ 10,000, the number of data points in the test case. The second will be n, 2 ≤ n ≤ 10, the number of elements in a subgroup. That will be followed by x space separated integers for the test case containing the sequential data gathered from an engineering process. These will be integers with values between -10,000 and 10,000, inclusive.

The last subgroup may be incomplete (i.e. it may not contain n elements). The last subgroup should be treated like a normal subgroup, even if it is incomplete. For example, let's say the subgroup had the entries <1,6,2>. If n = 10, this subgroup is incomplete. The range would be 5 (6 - 1 = 5), and the average would be 3 ((1 + 6 + 2)/3 = 3). If there is only 1 item in this subgroup, the average would be equal to the number, and the range would be 0.

Output Format

You are to calculate the three sigma control limits and then test the data to see if it is in control or out of control. For each test case, output, on a line by itself, either "In Control" or "Out of Control" as appropriate.

Note that the output is case-sensitive.

Sample Input

1
25 5 -13 -18 4 15 -3 10 9 -1 17 -1 -2 20 -20 10 -4 2 2 -5 -1 -14 4 -9 13 4 12

Sample Output

Out of Control

Explanation

The table below shows the necessary calculations for these 25 data points, given that there are 5 items in a subgroup.

DATA     SUBGROUP AVERAGE     SUBGROUP RANGE
-13
-18
4
15
-3 -3 33
10
9
-1
17
-1 6.8 18
-2
20
-20
10
-4 0.8 40
2
2
-5
-1
-14 -3.2 16
4
-9
13
4
12 4.8 22 GRAND AVERAGE 1.24 25.8 UCL 16.1266
CENTER LINE 1.24
LCL -13.6466 SIGMA 4.9622

For these calculations, A2 is 0.577 because we grouped five items in a group. As shown in the table, Xave is 1.24, and Rave is 25.8. Since the control limits are "3-sigma" lines, sigma is one third of the distance between the center line and the upper control limit.

This process would be considered out of control because there are a number of points, e.g. -18 and 20, that are more than three sigma from the center line. Note that in a real world analysis, you would need much more data to draw this conclusion.

题目解析

非常简单的一道题。根据题目的规则计算就行了。

完全不用考虑效率的问题,怎么方便怎么写。

程序

C++

#include <cmath>
#include <cstdio>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std; const double a2[] = {,,1.880,1.023,0.729,0.577,0.483,0.419,0.373,0.337,0.308}; // x/y rounded up
int roundedUp(int x, int y) {
return (x+y-) / y;
} bool inControl(vector<int> &p, int group_size) {
double center = , range = ;
int num_group = roundedUp(p.size(), group_size);
for(int i=; i<num_group; i++) {
double mean = , min = , max = -;
int g;
for(g=; g<group_size; g++) {
int index = i * group_size + g;
if(index >= p.size()) break; mean += p[index];
if(p[index] < min) min = p[index];
if(p[index] > max) max = p[index];
}
center += mean / g;
range += (max - min);
}
center /= num_group;
range /= num_group; double UC3 = center + a2[group_size] * range;
double UC2 = center + a2[group_size] * range * / ;
double UC1 = center + a2[group_size] * range / ;
double LC1 = center - a2[group_size] * range / ;
double LC2 = center - a2[group_size] * range * / ;
double LC3 = center - a2[group_size] * range; bool inControl = true;
// A single point falls outside the 3-sigma control limits.
for(int i=; i<p.size(); i++) {
if(p[i] > UC3 || p[i] < LC3) {
inControl = false;
}
}
// At least two out of three successive values fall on the same side of, and more than two sigma units away from, the center line.
for(int i=; i<p.size()-; i++) {
int countUp = , countDown = ;
for(int j=; j<; j++) {
if(p[i+j] > UC2) countUp++;
if(p[i+j] < LC2) countDown++;
}
if(countUp >= || countDown >= ) {
inControl = false;
}
}
// At least four out of five successive values fall on the same side of, and more than one sigma unit away from, the center line.
for(int i=; i<p.size()-; i++) {
int countUp = , countDown = ;
for(int j=; j<; j++) {
if(p[i+j] > UC1) countUp++;
if(p[i+j] < LC1) countDown++;
}
if(countUp >= || countDown >= ) {
inControl = false;
}
}
// At least eight successive values fall on the same side of the center line.
for(int i=; i<p.size()-; i++) {
int countUp = , countDown = ;
for(int j=; j<; j++) {
if(p[i+j] > center) countUp++;
if(p[i+j] < center) countDown++;
}
if(countUp == || countDown == ) {
inControl = false;
}
} return inControl;
} int main() {
/* Enter your code here. Read input from STDIN. Print output to STDOUT */
int T;
cin >> T;
for(int t=; t<T; t++) {
int N, group_size;
cin >> N >> group_size; vector<int> process(N);
for(int n=; n<N; n++) {
cin >> process[n];
} if(inControl(process, group_size)) {
cout << "In Control" << endl;
}
else {
cout << "Out of Control" << endl;
}
} return ;
}

博客中的文章均为 meelo 原创,请务必以链接形式注明 本文地址

IEEEXtreme 10.0 - Always Be In Control的更多相关文章

  1. IEEEXtreme 10.0 - Inti Sets

    这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Inti Sets 题目来源 第10届IEEE极限编程大赛 https://www.hackerrank.c ...

  2. IEEEXtreme 10.0 - Painter's Dilemma

    这是 meelo 原创的 IEEEXtreme极限编程比赛题解 Xtreme 10.0 - Painter's Dilemma 题目来源 第10届IEEE极限编程大赛 https://www.hack ...

  3. IEEEXtreme 10.0 - Ellipse Art

    这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Ellipse Art 题目来源 第10届IEEE极限编程大赛 https://www.hackerrank ...

  4. IEEEXtreme 10.0 - Counting Molecules

    这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Counting Molecules 题目来源 第10届IEEE极限编程大赛 https://www.hac ...

  5. IEEEXtreme 10.0 - Checkers Challenge

    这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Checkers Challenge 题目来源 第10届IEEE极限编程大赛 https://www.hac ...

  6. IEEEXtreme 10.0 - Game of Stones

    这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Game of Stones 题目来源 第10届IEEE极限编程大赛 https://www.hackerr ...

  7. IEEEXtreme 10.0 - Playing 20 Questions with an Unreliable Friend

    这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Playing 20 Questions with an Unreliable Friend 题目来源 第1 ...

  8. IEEEXtreme 10.0 - Full Adder

    这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Full Adder 题目来源 第10届IEEE极限编程大赛 https://www.hackerrank. ...

  9. IEEEXtreme 10.0 - N-Palindromes

    这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - N-Palindromes 题目来源 第10届IEEE极限编程大赛 https://www.hackerra ...

随机推荐

  1. 《剑指offer》— JavaScript(3)从尾到头打印链表

    从尾到头打印链表 题目描述 输入一个链表,从尾到头打印链表每个节点的值. 实现代码 /*function ListNode(x){ this.val = x; this.next = null; }* ...

  2. opencv2 直方图之calchist函数使用(转)

    OpenCV提供了calcHist函数来计算图像直方图. 其中C++的函数原型如下:void calcHist(const Mat* arrays, int narrays, const int* c ...

  3. springboot读取自己定义的配置文件的方式以及使用joda_time来处理时间日期

    总的来说呢,有两种方式,一种是原始的方式,即使用PropertiesUtils来读取配置文件. 第二种就是使用springboot的注解的方式来读取配置文件. 1.原始方式处理属性和时间日期: 工具类 ...

  4. Codeforces 221 E. Little Elephant and Shifts

    E. Little Elephant and Shifts time limit per test 2 seconds memory limit per test 256 megabytes inpu ...

  5. Scrollbar的样式

    .test{ /*立体滚动条凸出部分的颜色*/ scrollbar-face-color:#FEFAF1; /*滚动条空白部分的颜色*/ scrollbar-highlight-color:#FEFA ...

  6. .net中的lock

     lock锁 //定义一个私有成员变量,用于Lock的锁定标志 private static object lockobj = new object(); void DoSomething() { l ...

  7. JavaScript定义类的几种方式

    提起面向对象我们就能想到类,对象,封装,继承,多态.在<javaScript高级程序设计>(人民邮电出版社,曹力.张欣译.英文名字是:Professional JavaScript for ...

  8. 拦截asp.net输出流做处理

    本文标题是指对已经生成了HTML的页面做一些输出到客户端之前的处理. 方法的原理是:把Response的输出重定向到自定义的容器内,也就是我们的StringBuilder对象里,在HTML所有的向页面 ...

  9. 【BZOJ】4318: OSU! 期望DP

    [题意]有一个长度为n的01序列,每一段极大的连续1的价值是L^3(长度L).现在给定n个实数表示该位为1的概率,求期望总价值.n<=10^5. [算法]期望DP [题解]后缀长度是一个很关键的 ...

  10. Chrome浏览器任意修改网页内容

    在Chrome浏览器按F12,打开开发者工具,切换到console选项卡: 在下面的输入行输入下面的命令回车: document.body.contentEditable="true&quo ...