Softmax 函数的特点和作用
----------
因为这里不太方便编辑公式,所以很多公式推导的细节都已经略去了,如果对相关数学表述感兴趣的话,请戳这里的链接Softmax的理解与应用 - superCally的专栏 - 博客频道 - http://CSDN.NET") 0px 2px / cover;">
----------
Softmax在机器学习中有非常广泛的应用,但是刚刚接触机器学习的人可能对Softmax的特点以及好处并不理解,其实你了解了以后就会发现,Softmax计算简单,效果显著,非常好用。
我们先来直观看一下,Softmax究竟是什么意思
我们知道max,假如说我有两个数,a和b,并且a>b,如果取max,那么就直接取a,没有第二种可能
但有的时候我不想这样,因为这样会造成分值小的那个饥饿。所以我希望分值大的那一项经常取到,分值小的那一项也偶尔可以取到,那么我用softmax就可以了 现在还是a和b,a>b,如果我们取按照softmax来计算取a和b的概率,那a的softmax值大于b的,所以a会经常取到,而b也会偶尔取到,概率跟它们本来的大小有关。所以说不是max,而是 Soft max 那各自的概率究竟是多少呢,我们下面就来具体看一下
定义
假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个元素的Softmax值就是
也就是说,是该元素的指数,与所有元素指数和的比值
这个定义可以说非常的直观,当然除了直观朴素好理解以外,它还有更多的优点
1.计算与标注样本的差距
在神经网络的计算当中,我们经常需要计算按照神经网络的正向传播计算的分数S1,和按照正确标注计算的分数S2,之间的差距,计算Loss,才能应用反向传播。Loss定义为交叉熵
取log里面的值就是这组数据正确分类的Softmax值,它占的比重越大,这个样本的Loss也就越小,这种定义符合我们的要求
2.计算上非常非常的方便
当我们对分类的Loss进行改进的时候,我们要通过梯度下降,每次优化一个step大小的梯度
我们定义选到yi的概率是
然后我们求Loss对每个权重矩阵的偏导,应用链式法则(中间推导省略)。
最后结果的形式非常的简单,只要将算出来的概率的向量对应的真正结果的那一维减1,就可以了
举个例子,通过若干层的计算,最后得到的某个训练样本的向量的分数是[ 1, 5, 3 ], 那么概率分别就是[0.015,0.866,0.117],如果这个样本正确的分类是第二个的话,那么计算出来的偏导就是[0.015,0.866−1,0.117]=[0.015,−0.134,0.117],是不是很简单!!然后再根据这个进行back propagation就可以了
Softmax 函数的特点和作用的更多相关文章
- Softmax 函数的特点和作用是什么?
作者:张欣链接:https://www.zhihu.com/question/23765351/answer/98897364来源:知乎著作权归作者所有,转载请联系作者获得授权. softmax 回归 ...
- softmax函数详解
答案来自专栏:机器学习算法与自然语言处理 详解softmax函数以及相关求导过程 这几天学习了一下softmax激活函数,以及它的梯度求导过程,整理一下便于分享和交流. softmax函数 softm ...
- Softmax函数详解与推导
一.softmax函数 softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类! 假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个 ...
- [机器学习入门篇]-Logistic函数与Softmax函数
1.Logistic函数 在维基百科中,对logistic函数这样介绍道: A logistic function or logistic curve is a common "S" ...
- [转]softmax函数详解
答案来自专栏:机器学习算法与自然语言处理 详解softmax函数以及相关求导过程 这几天学习了一下softmax激活函数,以及它的梯度求导过程,整理一下便于分享和交流. softmax函数 softm ...
- 深度学习(四) softmax函数
softmax函数 softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类! 假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个元素 ...
- Sigmoid函数与Softmax函数的理解
1. Sigmod 函数 1.1 函数性质以及优点 其实logistic函数也就是经常说的sigmoid函数,它的几何形状也就是一条sigmoid曲线(S型曲线). 其中z ...
- python3 Softmax函数
Softmax函数公式 Softmax的作用简单的说就计算一组数值中每个值的占比 import torch import torch.nn.functional as F # 原始数据tensor y ...
- [Machine Learning] logistic函数和softmax函数
简单总结一下机器学习最常见的两个函数,一个是logistic函数,另一个是softmax函数,若有不足之处,希望大家可以帮忙指正.本文首先分别介绍logistic函数和softmax函数的定义和应用, ...
随机推荐
- hello java !
我对于计算机性编程性质的课程一直没有很好的悟性,但功夫不服有心,最近自己学习视频课程,随时关注娄老师的博客,慢慢的对于java编程有了新的认识,也用eclipse软件进行了简单java的编译. 了解的 ...
- 20162314 Sortingtest-work after class
20162314 Sortingtest-work after class Content Data : 90 8 7 56 123 235 9 1 653. Use JDB or IDEA to t ...
- 百度console输出
try{ if(window.console&&window.console.log) { console.log("一张网页,要经历怎样的过程,才能抵达用户面前?\n一位新 ...
- this 的理解
function foo(num){ console.log("foo:",+num); this.count++}foo.count =0for (var i=0; i<1 ...
- Springboot--配置文件注解
使用注解1 1.resouse中新建application.proprities jdbc.username=root jdbc.password=123 jdbc.driverClassName=f ...
- SQL Server-深入剖析统计信息
转自: http://www.cnblogs.com/zhijianliutang/p/4190669.html 概念理解 关于SQL Server中的统计信息,在联机丛书中是这样解释的 查询优化 ...
- 关于在phpStudy环境下,windows cmd中 php不是内部命令问题
首先查看system32是否加入系统变量 其次要把当前运行的php版本的路径加入到系统变量中去,path中, 一定要是这个样子的: D:\phpStudy\php\php-5.6.27-nts 不然没 ...
- authentication vs authorization 验证与授权的区别
认证和授权的区别 Authentication vs. Authorization简单来说,认证(Authentication )是用来回答以下问题: 用户是谁 当前用户是否真的是他所代表的角色 通常 ...
- Android数据库框架-----ORMLite 的基本用法
ORMLite 是一款非要流行的Android平台上的数据库框架,性能优秀,代码简洁: 简述: 优点: 1.轻量级:2.使用简单,易上手:3.封装完善:4.文档全面. 缺点:1.基于反射,效率较低(本 ...
- centos网卡配置
DEVICE=物理设备名 IPADDR=IP地址 NETMASK=掩码值 NETWORK=网络地址 BROADCAST=广播地址 GATEWAY=网关地址 TYPE=Ethernet (网络类型)ON ...