----------

因为这里不太方便编辑公式,所以很多公式推导的细节都已经略去了,如果对相关数学表述感兴趣的话,请戳这里的链接Softmax的理解与应用 - superCally的专栏 - 博客频道 - http://CSDN.NET") 0px 2px / cover;">

----------

Softmax在机器学习中有非常广泛的应用,但是刚刚接触机器学习的人可能对Softmax的特点以及好处并不理解,其实你了解了以后就会发现,Softmax计算简单,效果显著,非常好用。

我们先来直观看一下,Softmax究竟是什么意思

我们知道max,假如说我有两个数,a和b,并且a>b,如果取max,那么就直接取a,没有第二种可能

但有的时候我不想这样,因为这样会造成分值小的那个饥饿。所以我希望分值大的那一项经常取到,分值小的那一项也偶尔可以取到,那么我用softmax就可以了 现在还是a和b,a>b,如果我们取按照softmax来计算取a和b的概率,那a的softmax值大于b的,所以a会经常取到,而b也会偶尔取到,概率跟它们本来的大小有关。所以说不是max,而是 Soft max 那各自的概率究竟是多少呢,我们下面就来具体看一下

定义

假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个元素的Softmax值就是

也就是说,是该元素的指数,与所有元素指数和的比值

这个定义可以说非常的直观,当然除了直观朴素好理解以外,它还有更多的优点

1.计算与标注样本的差距

在神经网络的计算当中,我们经常需要计算按照神经网络的正向传播计算的分数S1,和按照正确标注计算的分数S2,之间的差距,计算Loss,才能应用反向传播。Loss定义为交叉熵

取log里面的值就是这组数据正确分类的Softmax值,它占的比重越大,这个样本的Loss也就越小,这种定义符合我们的要求

2.计算上非常非常的方便

当我们对分类的Loss进行改进的时候,我们要通过梯度下降,每次优化一个step大小的梯度

我们定义选到yi的概率是

然后我们求Loss对每个权重矩阵的偏导,应用链式法则(中间推导省略)

最后结果的形式非常的简单,只要将算出来的概率的向量对应的真正结果的那一维减1,就可以了

举个例子,通过若干层的计算,最后得到的某个训练样本的向量的分数是[ 1, 5, 3 ], 那么概率分别就是[0.015,0.866,0.117],如果这个样本正确的分类是第二个的话,那么计算出来的偏导就是[0.015,0.866−1,0.117]=[0.015,−0.134,0.117],是不是很简单!!然后再根据这个进行back propagation就可以了

Softmax 函数的特点和作用的更多相关文章

  1. Softmax 函数的特点和作用是什么?

    作者:张欣链接:https://www.zhihu.com/question/23765351/answer/98897364来源:知乎著作权归作者所有,转载请联系作者获得授权. softmax 回归 ...

  2. softmax函数详解

    答案来自专栏:机器学习算法与自然语言处理 详解softmax函数以及相关求导过程 这几天学习了一下softmax激活函数,以及它的梯度求导过程,整理一下便于分享和交流. softmax函数 softm ...

  3. Softmax函数详解与推导

    一.softmax函数 softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类! 假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个 ...

  4. [机器学习入门篇]-Logistic函数与Softmax函数

    1.Logistic函数 在维基百科中,对logistic函数这样介绍道: A logistic function or logistic curve is a common "S" ...

  5. [转]softmax函数详解

    答案来自专栏:机器学习算法与自然语言处理 详解softmax函数以及相关求导过程 这几天学习了一下softmax激活函数,以及它的梯度求导过程,整理一下便于分享和交流. softmax函数 softm ...

  6. 深度学习(四) softmax函数

    softmax函数 softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类! 假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个元素 ...

  7. Sigmoid函数与Softmax函数的理解

    1. Sigmod 函数 1.1 函数性质以及优点 其实logistic函数也就是经常说的sigmoid函数,它的几何形状也就是一条sigmoid曲线(S型曲线).               其中z ...

  8. python3 Softmax函数

    Softmax函数公式 Softmax的作用简单的说就计算一组数值中每个值的占比 import torch import torch.nn.functional as F # 原始数据tensor y ...

  9. [Machine Learning] logistic函数和softmax函数

    简单总结一下机器学习最常见的两个函数,一个是logistic函数,另一个是softmax函数,若有不足之处,希望大家可以帮忙指正.本文首先分别介绍logistic函数和softmax函数的定义和应用, ...

随机推荐

  1. python-运算、分支、深浅拷贝

      算术表达式: + - * / 除法Python3中是默认向浮点数靠拢 //取整运算   结果的最小整数靠拢  向下 5 // 2 = 2(向下取整) %取余运算 5 % 2 = 1 **幂值运算 ...

  2. PHP爬取知乎日报图片显示不了问题

    在爬取知乎日报的内容时,虽然能拿到图片的地址,在窗口中也能打开图片,但是在前端却显示不了,报403错误. 经查证,这是因为知乎对图片做了防盗链处理,其中一个解决方法是添加meta标签: <met ...

  3. CSS控制滚动条的样式

    到今天(2018年10月25日)为止, 这还是chrome上的一个实验性特性: ::-webkit-scrollbar{width:4px;height:4px;} ::-webkit-scrollb ...

  4. Android 7.1 快捷方式 Shortcuts

    转载请注明出处:王亟亟的大牛之路 前些天就看到相关内容了,但是最近吸毒比较深(wow),所以没有紧跟潮流,今天补一篇. 先安利:https://github.com/ddwhan0123/Useful ...

  5. Task作为返回值以及Task<TResult>作为返回值

    async await return Task https://stackoverflow.com/questions/25191512/async-await-return-task Can som ...

  6. SQL Server-深入剖析统计信息

    转自: http://www.cnblogs.com/zhijianliutang/p/4190669.html   概念理解 关于SQL Server中的统计信息,在联机丛书中是这样解释的 查询优化 ...

  7. NAT模式下远程连接centos6虚拟机与虚拟机网络配置

    最近装了centos,但是没有网络,也无法远程连接.关键是虚拟机中没有ip地址. 网上方法很多,但是每个人情况不一样,所以不尽适用. 1.解决这个问题,首先保证你的vmware的dhcp服务和net服 ...

  8. Flume在企业大数据仓库架构中位置及功能

    Flume在企业大数据仓库架构中位置及功能 hadoop 数据仓库 flume 数据仓库架构 1.如下图所示,外部数据中,关系型数据库导入到HDFS用sqoop,由Nginx产生的文件实时监控用Flu ...

  9. bootstrap-datetimepicker日期控件下载

    bootstrap-datetimepicker.js bootstrap-datetimepicker.zh-CN.js bootstrap-datetimepicker.min.css 下载网站: ...

  10. Python性能(转)

    第一部分 阅读 Zen of Python,在Python解析器中输入 import this. 一个犀利的Python新手可能会注意到"解析"一词, 认为Python不过是另一门 ...