Factorial Problem in Base K

Time Limit: 20 Sec  Memory Limit: 256 MB

题目连接

http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3621

Description

How many zeros are there in the end of s! if both s and s! are written in base k which is not necessarily to be 10? For general base, the digit order is 0-9,A-Z,a-z(increasingly), for example F4 in base 46 is actually 694 in base 10,and f4 in base 46 is 1890 in base 10.

Input

There are multiple cases(less than 10000). Each case is a line containing two integers s and k(0 ≤ s < 2^63, 2 ≤ k ≤ 62).

Output

For each case, output a single line containing exactly one integer in base 10 indicating the number of zeros in the end of s!.

Sample Input

101 2
12 7
 

Sample Output

3
1

HINT

题意

给你个在k进制下的数S,然后求S!在K进制下,有多少个末尾0

题解:

首先在10进制下,我们是怎么做的?我们先对10进行了质因数分解,分解成了2和5,然后我们就统计s!中,2和5各有多少个,然后取最少的就好了

就这样,我们先对k进行质因数分解,然后我们取最少个数就好了

代码:

//qscqesze
#include <cstdio>
#include <cmath>
#include <cstring>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <set>
#include <vector>
#include <sstream>
#include <queue>
#include <typeinfo>
#include <fstream>
#include <map>
#include <stack>
typedef long long ll;
using namespace std;
//freopen("D.in","r",stdin);
//freopen("D.out","w",stdout);
#define sspeed ios_base::sync_with_stdio(0);cin.tie(0)
#define test freopen("test.txt","r",stdin)
#define maxn 200001
#define mod 10007
#define eps 1e-9
int Num;
char CH[];
//const int inf=0x7fffffff; //нчоч╢С
const int inf=0x3f3f3f3f;
inline ll read()
{
ll x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
inline void P(int x)
{
Num=;if(!x){putchar('');puts("");return;}
while(x>)CH[++Num]=x%,x/=;
while(Num)putchar(CH[Num--]+);
puts("");
}
//************************************************************************************** string s;
int n;
const int p[]={,,,,,,,,,,,,,,,,,};
int a[];
int main()
{
while(cin>>s>>n)
{
memset(a,,sizeof(a));
ll tmp=;
ll k=;
for(int i=s.size()-;i>=;i--)
{
if(s[i]<=''&&s[i]>='')
tmp+=(s[i]-'')*k;
else if(s[i]<='Z'&&s[i]>='A')
tmp+=(s[i]-'A'+)*k;
else
tmp+=(s[i]-'a'+)*k;
k*=n;
}
for(int i=;i<;i++)
{
while(n%p[i]==&&n>)
{
n/=p[i];
a[i]++;
}
}
ll ans=(1LL<<)-;
for(int i=;i<;i++)
{
ll now=tmp,tot=;
while(now>)
{
now/=p[i];
tot+=now;
}
if(a[i]>)
ans=min(ans,tot/a[i]);
}
printf("%lld\n",ans);
} }

zoj 3621 Factorial Problem in Base K 数论 s!后的0个数的更多相关文章

  1. Factorial Problem in Base K(zoj3621)

    Factorial Problem in Base K Time Limit: 2 Seconds Memory Limit: 65536 KB How many zeros are there in ...

  2. Codeforces Round #424 (Div. 2, rated, based on VK Cup Finals) Problem F (Codeforces 831F) - 数论 - 暴力

    题目传送门 传送门I 传送门II 传送门III 题目大意 求一个满足$d\sum_{i = 1}^{n} \left \lceil \frac{a_i}{d} \right \rceil - \sum ...

  3. hdu6003 Problem Buyer 贪心 给定n个区间,以及m个数,求从n个区间中任意选k个区间,满足m个数都能在k个区间中找到一个包含它的区间,如果一个区间包含了x,那么 该区间不能再去包含另一个数,即k>=m。求最小的k。如果不存在这样的k,输出“IMPOSSIBLE!”。

    /** 题目:hdu6003 Problem Buyer 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6003 题意:给定n个区间,以及m个数,求从n个区 ...

  4. 剑指offer12:求解double类型的浮点数base和int类型的整数exponent的次方。 保证base和exponent不同时为0

    1. 题目描述 给定一个double类型的浮点数base和int类型的整数exponent.求base的exponent次方.保证base和exponent不同时为0. 2. 思路和方法 分析: 由于 ...

  5. [笔记] $f(i)$ 为 $k$ 次多项式,$\sum_{i=0}^nf(i)\cdot q^i$ 的 $O(k\log k)$ 求法

    \(f(i)\) 为 \(k\) 次多项式,\(\sum_{i=0}^nf(i)\cdot q^i\) 的 \(O(k\log k)\) 求法 令 \(S(n)=\sum_{i=0}^{n-1}f(i ...

  6. 【贪心+中位数】【新生赛3 1007题】 Problem G (K)

    Problem G Time Limit : 4000/2000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) Total Sub ...

  7. ZOJ 3362 Beer Problem(SPFA费用流应用)

    Beer Problem Time Limit: 2 Seconds      Memory Limit: 32768 KB Everyone knows that World Finals of A ...

  8. BZOJ2301/LG2522 「HAOI2011」Problem B 莫比乌斯反演 数论分块

    问题描述 BZOJ2301 LG2522 积性函数 若函数 \(f(x)\) 满足对于任意两个最大公约数为 \(1\) 的数 \(m,n\) ,有 \(f(mn)=f(m) \times f(n)\) ...

  9. zoj 2112 动态区间求第k大

    题目大意: 动态单点更新,然后多次询问求区间内第k大 这里单个的主席树不能实现,这里采取的是树状数组套主席树 首先可以想的是将静态主席树先构建好,不去动它,这里空间复杂度就是O(nlogn),这个只要 ...

随机推荐

  1. 转:字符集和字符编码(Charset & Encoding)

    转自:http://www.cnblogs.com/skynet/archive/2011/05/03/2035105.html ——每个软件开发人员应该无条件掌握的知识! ——Unicode伟大的创 ...

  2. Linux内核同步原语之原子操作【转】

    转自:http://blog.csdn.net/npy_lp/article/details/7262388 避免对同一数据的并发访问(通常由中断.对称多处理器.内核抢占等引起)称为同步. ——题记 ...

  3. C/C++面试题目一

    C/C++开发工程师面试题目(一)(附答案分析) 推荐:自己根据在面试中碰到做过的一些题目以及总结的题目,希望对面试的同学有所帮助. 一. 选择题 1. 下列类中(  )不是输入输出流类iostrea ...

  4. Django 中form的用法

    form的主要作用:1.在html中生成表单框架,2.验证数据(实话实说,很简洁,但不实用,灵活性差) from django.db import models # Create your model ...

  5. python基础(11)--面向对象

    1.概述 面向过程:根据业务的逻辑从上到下写代码 函数式:将某功能代码封装到函数中,日后便无需重复编写,仅调用函数即可 面向对象:对函数进行分类和封装,让开发更快更好更强 面向过程编程最易被初学者接受 ...

  6. 【Mac】【已解决】连接Android机器提示“此电脑不能读取您插入的磁盘”

    出现的报错提示页面截图如下: 解决方案: 下载“Android File Transfer.dmg”安装在Mac. 打开USB调试,连接手机即可读取手机磁盘.   下载链接:https://www.t ...

  7. js监测设备类型【安卓,ios,苹果微信,电脑pc】

    话不多说上代码: 1.判断是不是微信 function is_weixn(){ var ua = navigator.userAgent.toLowerCase(); if(ua.match(/Mic ...

  8. Python全栈开发之9、面向对象、元类以及单例

    前面一系列博文讲解的都是面向过程的编程,如今是时候来一波面向对象的讲解了 一.简介 面向对象编程是一种编程方式,使用 “类” 和 “对象” 来实现,所以,面向对象编程其实就是对 “类” 和 “对象” ...

  9. Deepin 2015 安装惠普打印机驱动

    参考:https://bbs.deepin.org/forum.php?mod=viewthread&tid=34749&extra= 1.安装新立得包管理器:sudo apt-get ...

  10. Nodejs JSON.parse()无法解析ObjectID和ISODate的问题

    一个早上搞清楚了一个问题,关于Nodjes JSON.parse()方法只能解析字符串.布尔值.数字等,但不能解析ObjectID及ISODate的值 原因:<How to handle Obj ...