题目描述

Petya loves lucky numbers very much. Everybody knows that lucky numbers are positive integers whose decimal record contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.

Petya has sequence aa consisting of nn integers.

The subsequence of the sequence aa is such subsequence that can be obtained from aa by removing zero or more of its elements.

Two sequences are considered different if index sets of numbers included in them are different. That is, the values ​of the elements ​do not matter in the comparison of subsequences. In particular, any sequence of length nn has exactly 2^{n}2n different subsequences (including an empty subsequence).

A subsequence is considered lucky if it has a length exactly kk and does not contain two identical lucky numbers (unlucky numbers can be repeated any number of times).

Help Petya find the number of different lucky subsequences of the sequence aa . As Petya's parents don't let him play with large numbers, you should print the result modulo prime number 10000000071000000007 (10^{9}+7)(109+7) .

输入输出格式

输入格式:

 

The first line contains two integers nn and kk (1<=k<=n<=10^{5})(1<=k<=n<=105) . The next line contains nn integers a_{i}ai​ ( 1<=a_{i}<=10^{9}1<=ai​<=109 ) — the sequence aa .

 


输出格式:

 

On the single line print the single number — the answer to the problem modulo prime number 10000000071000000007 (10^{9}+7)(109+7) .

 

输入输出样例

输入样例#1: 

3 2
10 10 10
输出样例#1: 

3
输入样例#2: 

4 2
4 4 7 7
输出样例#2: 

4

说明

In the first sample all 3 subsequences of the needed length are considered lucky.

In the second sample there are 4 lucky subsequences. For them the sets of indexes equal (the indexation starts from 1 ): {1,3}1,3 , {1,4}1,4 , {2,3}2,3 and {2,4}2,4 .

题意:

定义神仙数为只含4和7的数字

给出n个数字,让你从里面取k个,同一个神仙数不能重复取,求取法数

题解

首先如果没有重复取这个限制,这就是一道线性求组合数。

就算有这个限制,全部不能重复取也是可做的,所以自然会感觉这种部分可重复部分不能的题很难受,于是会想到将原来的数组拆成两组,一组只有神仙数,一组只有非神仙数

然后答案就是在神仙数中取i个,在非神仙数中取k-i个的方案相乘,再将i=1~n的所有方案相加起来,就是答案

非神仙数显然可以线性处理组合数,O(1)查询

如今的问题是如何解决神仙数

首先需要搞清楚神仙数的一个性质:他非常少

这是可以证明的

一位的时候有4/7两种,两位有4种,反正1e9内大概不到3000个

这可以n^2DP

令dp[i][j]表示到第i位取j个数的方案数

显然dp[i][j]=dp[i-1][j]+dp[i-1][j-1]*num[a[i]]

num[a[i]]表示大小为a[i]的神仙数个数

于是就可以A掉这题了

代码如下:

#include<map>
#include<cmath>
#include<stack>
#include<cstdio>
#include<string>
#include<vector>
#include<cstring>
#include<iostream>
#include<algorithm>
#define mod 1000000007
using namespace std; long long fac[],inv[],n,m,ans;
map<long long,int> m1;
vector<long long> a,b;
long long dp[][]; long long kasumi(long long a,long long b)
{
long long ans=;
while(b)
{
if(b&)
{
ans=ans*a%mod;
}
a=a*a%mod;
b>>=;
}
return ans;
} long long c(int n,int m)
{
if(n>m) return 0ll;
return fac[m]*inv[n]%mod*inv[m-n]%mod;
} int check(long long x)
{
while(x)
{
if(x%!=&&x%!=) return ;
x/=;
}
return ;
} int main()
{
fac[]=;
inv[]=;
for(int i=; i<=; i++)
{
fac[i]=fac[i-]*i%mod;
}
inv[]=kasumi(fac[],mod-);
for(int i=; i>=; i--)
{
inv[i]=inv[i+]*(i+)%mod;
}
scanf("%lld%lld",&n,&m);
long long tmp;
for(int i=; i<=n; i++)
{
scanf("%lld",&tmp);
if(check(tmp))
{
if(m1.count(tmp))
{
m1[tmp]++;
}
else
{
m1[tmp]++;
a.push_back(tmp);
}
}
else
{
b.push_back(tmp);
}
}
for(int i=;i<=;i++)
{
dp[i][]=;
}
if(a.size()>=)
{
dp[][]=m1[a[]];
for(int i=; i<a.size(); i++)
{
for(int j=; j<=a.size(); j++)
{
dp[i][j]=dp[i-][j]+dp[i-][j-]*m1[a[i]];
dp[i][j]%=mod;
}
}
}
int lena=a.size(),lenb=b.size();
ans+=c(m,lenb);
for(int i=; i<=min(lena*1ll,m); i++)
{
ans+=dp[lena-][i]*c(m-i,lenb);
ans%=mod;
}
printf("%lld\n",ans);
}

CodeForces 146E Lucky Subsequence(组合数+DP)的更多相关文章

  1. CodeForces 146E - Lucky Subsequence DP+扩展欧几里德求逆元

    题意: 一个数只含有4,7就是lucky数...现在有一串长度为n的数...问这列数有多少个长度为k子串..这些子串不含两个相同的lucky数... 子串的定义..是从这列数中选出的数..只要序号不同 ...

  2. HDOJ 1423 Greatest Common Increasing Subsequence 【DP】【最长公共上升子序列】

    HDOJ 1423 Greatest Common Increasing Subsequence [DP][最长公共上升子序列] Time Limit: 2000/1000 MS (Java/Othe ...

  3. HDOJ 1159 Common Subsequence【DP】

    HDOJ 1159 Common Subsequence[DP] Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K ...

  4. POJ_2533 Longest Ordered Subsequence【DP】【最长上升子序列】

    POJ_2533 Longest Ordered Subsequence[DP][最长递增子序列] Longest Ordered Subsequence Time Limit: 2000MS Mem ...

  5. 【bzoj4517】[Sdoi2016]排列计数 组合数+dp

    题目描述 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是稳定的 满足条 ...

  6. [BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆)

    [BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆) 题面 一棵二叉树的所有点的点权都是给定的集合中的一个数. 让你求出1到m中所有权 ...

  7. [Codeforces 280D]k-Maximum Subsequence Sum(线段树)

    [Codeforces 280D]k-Maximum Subsequence Sum(线段树) 题面 给出一个序列,序列里面的数有正有负,有两种操作 1.单点修改 2.区间查询,在区间中选出至多k个不 ...

  8. D. Yet Another Problem On a Subsequence 解析(DP)

    Codeforce 1000 D. Yet Another Problem On a Subsequence 解析(DP) 今天我們來看看CF1000D 題目連結 題目 略,請直接看原題 前言 這題提 ...

  9. CodeForces - 1000D:Yet Another Problem On a Subsequence (DP+组合数)

    The sequence of integers a1,a2,…,aka1,a2,…,ak is called a good array if a1=k−1a1=k−1 and a1>0a1&g ...

随机推荐

  1. cocos2dx切换播放的动画

    版本:cocos2dx 2.2.6 IDE: VS2012 语言:C++98 美术资源一共有两段动画的序列帧,一个是手绘马行走图,一个是分子人行走图. 程序要实现的目的就是在同一个位置,点击按钮可以实 ...

  2. clutter recoder

    cin >> ch; cin.get(ch);区别读取输入是否忽略空格.制表等; char ch; ; cout << "Enter characters;enter ...

  3. Python入门——import

    最近身边的人或多或少都知道一点python,自己也想动手试试吧.按照网上的教程,安装了python,Eclipse插件pydev.接下来就是在Eclipse下新建工程,创建py文件这就不多说了. 第一 ...

  4. WePY 在手机充值小程序中的应用与实践

    wepyjs 发布了两个月了,中间经历了很多版本更新,也慢慢开始有一些用户选择 wepyjs 作为开发框架来开发小程序,比如一些线上小程序. 以及一些来自网上的 wepyjs 的相关资源: demo源 ...

  5. leetcode357

    public class Solution { public int CountNumbersWithUniqueDigits(int n) { ) { ; } ; ; ; && av ...

  6. bootstrap 自定义

    在ror工程内 /app/assets/stylesheets/bootstrap_and_overrides.css.less 内覆盖内容 具体参数如下 https://github.com/twb ...

  7. 如何理解dart的mixin

    mixin翻译出来就是混入的意思 混入,就是一个类可以使用另一个类里的功能比如方法或者属性,其实这个功能并不陌生 ,有点类似c#里的扩展方法,但是并不同于, mixin和implements有着本质的 ...

  8. 塔防游戏 Day3

    1. 添加按钮动画 选择 Button->Transition 为 Animation ,然后自定义四种状态动画即可. 2. 控制升级面板的显示和隐藏 // 升级处理 // 若点击同一炮塔,并且 ...

  9. 我的MAXSCRIPT笔记

    getnodebyname "circle01" for o in objects do if o.name == "circle01" then select ...

  10. iOS 布局之 Springs and Struts

    “springs and struts” 模式,就是代码中的autosizing masks布局控制. autosizing mask决定了一个view会发生什么当它的superview 改变大小的时 ...