【原创】Kafka Consumer多线程实例


| 优点 | 缺点 | |
| 方法1(每个线程维护一个KafkaConsumer) | 方便实现 速度较快,因为不需要任何线程间交互 易于维护分区内的消息顺序 |
更多的TCP连接开销(每个线程都要维护若干个TCP连接) consumer数受限于topic分区数,扩展性差 频繁请求导致吞吐量下降 线程自己处理消费到的消息可能会导致超时,从而造成rebalance |
| 方法2 (单个(或多个)consumer,多个worker线程) | 可独立扩展consumer数和worker数,伸缩性好 |
实现麻烦
通常难于维护分区内的消息顺序
处理链路变长,导致难以保证提交位移的语义正确性
|
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer; import java.util.Arrays;
import java.util.Properties; public class ConsumerRunnable implements Runnable { // 每个线程维护私有的KafkaConsumer实例
private final KafkaConsumer<String, String> consumer; public ConsumerRunnable(String brokerList, String groupId, String topic) {
Properties props = new Properties();
props.put("bootstrap.servers", brokerList);
props.put("group.id", groupId);
props.put("enable.auto.commit", "true"); //本例使用自动提交位移
props.put("auto.commit.interval.ms", "1000");
props.put("session.timeout.ms", "30000");
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
this.consumer = new KafkaConsumer<>(props);
consumer.subscribe(Arrays.asList(topic)); // 本例使用分区副本自动分配策略
} @Override
public void run() {
while (true) {
ConsumerRecords<String, String> records = consumer.poll(200); // 本例使用200ms作为获取超时时间
for (ConsumerRecord<String, String> record : records) {
// 这里面写处理消息的逻辑,本例中只是简单地打印消息
System.out.println(Thread.currentThread().getName() + " consumed " + record.partition() +
"th message with offset: " + record.offset());
}
}
}
}
ConsumerGroup类
package com.my.kafka.test; import java.util.ArrayList;
import java.util.List; public class ConsumerGroup { private List<ConsumerRunnable> consumers; public ConsumerGroup(int consumerNum, String groupId, String topic, String brokerList) {
consumers = new ArrayList<>(consumerNum);
for (int i = 0; i < consumerNum; ++i) {
ConsumerRunnable consumerThread = new ConsumerRunnable(brokerList, groupId, topic);
consumers.add(consumerThread);
}
} public void execute() {
for (ConsumerRunnable task : consumers) {
new Thread(task).start();
}
}
}
ConsumerMain类
public class ConsumerMain {
public static void main(String[] args) {
String brokerList = "localhost:9092";
String groupId = "testGroup1";
String topic = "test-topic";
int consumerNum = 3;
ConsumerGroup consumerGroup = new ConsumerGroup(consumerNum, groupId, topic, brokerList);
consumerGroup.execute();
}
}
方法2
import org.apache.kafka.clients.consumer.ConsumerRecord;
public class Worker implements Runnable {
private ConsumerRecord<String, String> consumerRecord;
public Worker(ConsumerRecord record) {
this.consumerRecord = record;
}
@Override
public void run() {
// 这里写你的消息处理逻辑,本例中只是简单地打印消息
System.out.println(Thread.currentThread().getName() + " consumed " + consumerRecord.partition()
+ "th message with offset: " + consumerRecord.offset());
}
}
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer; import java.util.Arrays;
import java.util.Properties;
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit; public class ConsumerHandler { // 本例中使用一个consumer将消息放入后端队列,你当然可以使用前一种方法中的多实例按照某张规则同时把消息放入后端队列
private final KafkaConsumer<String, String> consumer;
private ExecutorService executors; public ConsumerHandler(String brokerList, String groupId, String topic) {
Properties props = new Properties();
props.put("bootstrap.servers", brokerList);
props.put("group.id", groupId);
props.put("enable.auto.commit", "true");
props.put("auto.commit.interval.ms", "1000");
props.put("session.timeout.ms", "30000");
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
consumer = new KafkaConsumer<>(props);
consumer.subscribe(Arrays.asList(topic));
} public void execute(int workerNum) {
executors = new ThreadPoolExecutor(workerNum, workerNum, 0L, TimeUnit.MILLISECONDS,
new ArrayBlockingQueue<>(1000), new ThreadPoolExecutor.CallerRunsPolicy()); while (true) {
ConsumerRecords<String, String> records = consumer.poll(200);
for (final ConsumerRecord record : records) {
executors.submit(new Worker(record));
}
}
} public void shutdown() {
if (consumer != null) {
consumer.close();
}
if (executors != null) {
executors.shutdown();
}
try {
if (!executors.awaitTermination(10, TimeUnit.SECONDS)) {
System.out.println("Timeout.... Ignore for this case");
}
} catch (InterruptedException ignored) {
System.out.println("Other thread interrupted this shutdown, ignore for this case.");
Thread.currentThread().interrupt();
}
} }
public class Main {
public static void main(String[] args) {
String brokerList = "localhost:9092,localhost:9093,localhost:9094";
String groupId = "group2";
String topic = "test-topic";
int workerNum = 5;
ConsumerHandler consumers = new ConsumerHandler(brokerList, groupId, topic);
consumers.execute(workerNum);
try {
Thread.sleep(1000000);
} catch (InterruptedException ignored) {}
consumers.shutdown();
}
}
总结一下,这两种方法或是模型都有各自的优缺点,在具体使用时需要根据自己实际的业务特点来选取对应的方法。就我个人而言,我比较推崇第二种方法以及背后的思想,即不要将很重的处理逻辑放入消费者的代码中,很多Kafka consumer使用者碰到的各种rebalance超时、coordinator重新选举、心跳无法维持等问题都来源于此。
【原创】Kafka Consumer多线程实例的更多相关文章
- 【原创】Kafka Consumer多线程实例续篇
在上一篇<Kafka Consumer多线程实例>中我们讨论了KafkaConsumer多线程的两种写法:多KafkaConsumer多线程以及单KafkaConsumer多线程.在第二种 ...
- kafka系列 -- 多线程消费者实现
看了一下kafka,然后写了消费Kafka数据的代码.感觉自己功力还是不够. 不能随心所欲地操作数据,数据结构没学好,spark的RDD操作没学好. 不能很好地组织代码结构,设计模式没学好,面向对象思 ...
- 【原创】kafka consumer源代码分析
顾名思义,就是kafka的consumer api包. 一.ConsumerConfig.scala Kafka consumer的配置类,除了一些默认值常量及验证参数的方法之外,就是consumer ...
- 【原创】美团二面:聊聊你对 Kafka Consumer 的架构设计
在上一篇中我们详细聊了关于 Kafka Producer 内部的底层原理设计思想和细节, 本篇我们主要来聊聊 Kafka Consumer 即消费者的内部底层原理设计思想. 1.Consumer之总体 ...
- kafka consumer assign 和 subscribe模式差异分析
转载请注明原创地址:http://www.cnblogs.com/dongxiao-yang/p/7200971.html 最近需要研究flink-connector-kafka的消费行为,发现fli ...
- Kafka设计解析(四)- Kafka Consumer设计解析
本文转发自Jason’s Blog,原文链接 http://www.jasongj.com/2015/08/09/KafkaColumn4 摘要 本文主要介绍了Kafka High Level Con ...
- 读Kafka Consumer源码
最近一直在关注阿里的一个开源项目:OpenMessaging OpenMessaging, which includes the establishment of industry guideline ...
- kafka consumer 配置详解
1.Consumer Group 与 topic 订阅 每个Consumer 进程都会划归到一个逻辑的Consumer Group中,逻辑的订阅者是Consumer Group.所以一条message ...
- [Big Data - Kafka] Kafka设计解析(四):Kafka Consumer解析
High Level Consumer 很多时候,客户程序只是希望从Kafka读取数据,不太关心消息offset的处理.同时也希望提供一些语义,例如同一条消息只被某一个Consumer消费(单播)或被 ...
随机推荐
- Hive on Spark安装配置详解(都是坑啊)
个人主页:http://www.linbingdong.com 简书地址:http://www.jianshu.com/p/a7f75b868568 简介 本文主要记录如何安装配置Hive on Sp ...
- [原] KVM 虚拟化原理探究(3)— CPU 虚拟化
KVM 虚拟化原理探究(3)- CPU 虚拟化 标签(空格分隔): KVM [TOC] CPU 虚拟化简介 上一篇文章笼统的介绍了一个虚拟机的诞生过程,从demo中也可以看到,运行一个虚拟机再也不需要 ...
- ABP创建数据库操作步骤
1 ABP创建数据库操作步骤 1.1 SimpleTaskSystem.Web项目中的Web.config文件修改数据库配置. <add name="Default" pro ...
- ABAP实现屏幕自己刷新和跳转功能
ABAP开发工程中,有时候需要让跳转出的屏幕自动实现跳转和刷新的功能,该功能的实现需要在屏幕PBO 里面调用相应的事件执行. 关键代码为: SET TITLEBAR ' 屏幕自动程序'. IF g_c ...
- Windows下Redis缓存服务器的使用 .NET StackExchange.Redis Redis Desktop Manager
Redis缓存服务器是一款key/value数据库,读110000次/s,写81000次/s,因为是内存操作所以速度飞快,常见用法是存用户token.短信验证码等 官网显示Redis本身并没有Wind ...
- 如何获取url中的参数并传递给iframe中的报表
在使用报表软件时,用户系统左边一般有目录树,点击报表节点就会在右侧网页的iframe中显示出报表,同时点击的时候也会传递一些参数给网页,比如时间和用户信息等.如何使网页中的报表能够获取到传递过来的参数 ...
- .NET 环境中使用RabbitMQ
在企业应用系统领域,会面对不同系统之间的通信.集成与整合,尤其当面临异构系统时,这种分布式的调用与通信变得越发重要.其次,系统中一般会有很多对实时性要求不高的但是执行起来比较较耗时的地方,比如发送短信 ...
- Thinking in Unity3D:材质系统概览
关于<Thinking in Unity3D> 笔者在研究和使用Unity3D的过程中,获得了一些Unity3D方面的信息,同时也感叹Unity3D设计之精妙.不得不说,笔者最近几年的引擎 ...
- SQL Server 服务器磁盘测试之SQLIO篇(二)
上次放出了一篇文章,针对磁盘卷簇大小默认4KB和自定义64KB进行了测试,测试内容为随机和顺序读写,大小为8KB和64KB,有人觉得这并没有照顾到SQL Server所有的IO使用情景.这篇测试文章, ...
- SQL Server 服务器磁盘测试之SQLIO篇(一)
数据库调优工作中,有一部分是需要排查IO问题的,例如IO的速度或者RAID级别无法响应高并发下的快速请求.最常见的就是查看磁盘每次读写的响应速度,通过性能计数器Avg.Disk sec/Read(Wr ...