【原创】Kafka Consumer多线程实例


优点 | 缺点 | |
方法1(每个线程维护一个KafkaConsumer) | 方便实现 速度较快,因为不需要任何线程间交互 易于维护分区内的消息顺序 |
更多的TCP连接开销(每个线程都要维护若干个TCP连接) consumer数受限于topic分区数,扩展性差 频繁请求导致吞吐量下降 线程自己处理消费到的消息可能会导致超时,从而造成rebalance |
方法2 (单个(或多个)consumer,多个worker线程) | 可独立扩展consumer数和worker数,伸缩性好 |
实现麻烦
通常难于维护分区内的消息顺序
处理链路变长,导致难以保证提交位移的语义正确性
|
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer; import java.util.Arrays;
import java.util.Properties; public class ConsumerRunnable implements Runnable { // 每个线程维护私有的KafkaConsumer实例
private final KafkaConsumer<String, String> consumer; public ConsumerRunnable(String brokerList, String groupId, String topic) {
Properties props = new Properties();
props.put("bootstrap.servers", brokerList);
props.put("group.id", groupId);
props.put("enable.auto.commit", "true"); //本例使用自动提交位移
props.put("auto.commit.interval.ms", "1000");
props.put("session.timeout.ms", "30000");
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
this.consumer = new KafkaConsumer<>(props);
consumer.subscribe(Arrays.asList(topic)); // 本例使用分区副本自动分配策略
} @Override
public void run() {
while (true) {
ConsumerRecords<String, String> records = consumer.poll(200); // 本例使用200ms作为获取超时时间
for (ConsumerRecord<String, String> record : records) {
// 这里面写处理消息的逻辑,本例中只是简单地打印消息
System.out.println(Thread.currentThread().getName() + " consumed " + record.partition() +
"th message with offset: " + record.offset());
}
}
}
}
ConsumerGroup类
package com.my.kafka.test; import java.util.ArrayList;
import java.util.List; public class ConsumerGroup { private List<ConsumerRunnable> consumers; public ConsumerGroup(int consumerNum, String groupId, String topic, String brokerList) {
consumers = new ArrayList<>(consumerNum);
for (int i = 0; i < consumerNum; ++i) {
ConsumerRunnable consumerThread = new ConsumerRunnable(brokerList, groupId, topic);
consumers.add(consumerThread);
}
} public void execute() {
for (ConsumerRunnable task : consumers) {
new Thread(task).start();
}
}
}
ConsumerMain类
public class ConsumerMain { public static void main(String[] args) {
String brokerList = "localhost:9092";
String groupId = "testGroup1";
String topic = "test-topic";
int consumerNum = 3; ConsumerGroup consumerGroup = new ConsumerGroup(consumerNum, groupId, topic, brokerList);
consumerGroup.execute();
}
}
方法2
import org.apache.kafka.clients.consumer.ConsumerRecord; public class Worker implements Runnable { private ConsumerRecord<String, String> consumerRecord; public Worker(ConsumerRecord record) {
this.consumerRecord = record;
} @Override
public void run() {
// 这里写你的消息处理逻辑,本例中只是简单地打印消息
System.out.println(Thread.currentThread().getName() + " consumed " + consumerRecord.partition()
+ "th message with offset: " + consumerRecord.offset());
}
}
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer; import java.util.Arrays;
import java.util.Properties;
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit; public class ConsumerHandler { // 本例中使用一个consumer将消息放入后端队列,你当然可以使用前一种方法中的多实例按照某张规则同时把消息放入后端队列
private final KafkaConsumer<String, String> consumer;
private ExecutorService executors; public ConsumerHandler(String brokerList, String groupId, String topic) {
Properties props = new Properties();
props.put("bootstrap.servers", brokerList);
props.put("group.id", groupId);
props.put("enable.auto.commit", "true");
props.put("auto.commit.interval.ms", "1000");
props.put("session.timeout.ms", "30000");
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
consumer = new KafkaConsumer<>(props);
consumer.subscribe(Arrays.asList(topic));
} public void execute(int workerNum) {
executors = new ThreadPoolExecutor(workerNum, workerNum, 0L, TimeUnit.MILLISECONDS,
new ArrayBlockingQueue<>(1000), new ThreadPoolExecutor.CallerRunsPolicy()); while (true) {
ConsumerRecords<String, String> records = consumer.poll(200);
for (final ConsumerRecord record : records) {
executors.submit(new Worker(record));
}
}
} public void shutdown() {
if (consumer != null) {
consumer.close();
}
if (executors != null) {
executors.shutdown();
}
try {
if (!executors.awaitTermination(10, TimeUnit.SECONDS)) {
System.out.println("Timeout.... Ignore for this case");
}
} catch (InterruptedException ignored) {
System.out.println("Other thread interrupted this shutdown, ignore for this case.");
Thread.currentThread().interrupt();
}
} }
public class Main { public static void main(String[] args) {
String brokerList = "localhost:9092,localhost:9093,localhost:9094";
String groupId = "group2";
String topic = "test-topic";
int workerNum = 5; ConsumerHandler consumers = new ConsumerHandler(brokerList, groupId, topic);
consumers.execute(workerNum);
try {
Thread.sleep(1000000);
} catch (InterruptedException ignored) {}
consumers.shutdown();
}
}
总结一下,这两种方法或是模型都有各自的优缺点,在具体使用时需要根据自己实际的业务特点来选取对应的方法。就我个人而言,我比较推崇第二种方法以及背后的思想,即不要将很重的处理逻辑放入消费者的代码中,很多Kafka consumer使用者碰到的各种rebalance超时、coordinator重新选举、心跳无法维持等问题都来源于此。
【原创】Kafka Consumer多线程实例的更多相关文章
- 【原创】Kafka Consumer多线程实例续篇
在上一篇<Kafka Consumer多线程实例>中我们讨论了KafkaConsumer多线程的两种写法:多KafkaConsumer多线程以及单KafkaConsumer多线程.在第二种 ...
- kafka系列 -- 多线程消费者实现
看了一下kafka,然后写了消费Kafka数据的代码.感觉自己功力还是不够. 不能随心所欲地操作数据,数据结构没学好,spark的RDD操作没学好. 不能很好地组织代码结构,设计模式没学好,面向对象思 ...
- 【原创】kafka consumer源代码分析
顾名思义,就是kafka的consumer api包. 一.ConsumerConfig.scala Kafka consumer的配置类,除了一些默认值常量及验证参数的方法之外,就是consumer ...
- 【原创】美团二面:聊聊你对 Kafka Consumer 的架构设计
在上一篇中我们详细聊了关于 Kafka Producer 内部的底层原理设计思想和细节, 本篇我们主要来聊聊 Kafka Consumer 即消费者的内部底层原理设计思想. 1.Consumer之总体 ...
- kafka consumer assign 和 subscribe模式差异分析
转载请注明原创地址:http://www.cnblogs.com/dongxiao-yang/p/7200971.html 最近需要研究flink-connector-kafka的消费行为,发现fli ...
- Kafka设计解析(四)- Kafka Consumer设计解析
本文转发自Jason’s Blog,原文链接 http://www.jasongj.com/2015/08/09/KafkaColumn4 摘要 本文主要介绍了Kafka High Level Con ...
- 读Kafka Consumer源码
最近一直在关注阿里的一个开源项目:OpenMessaging OpenMessaging, which includes the establishment of industry guideline ...
- kafka consumer 配置详解
1.Consumer Group 与 topic 订阅 每个Consumer 进程都会划归到一个逻辑的Consumer Group中,逻辑的订阅者是Consumer Group.所以一条message ...
- [Big Data - Kafka] Kafka设计解析(四):Kafka Consumer解析
High Level Consumer 很多时候,客户程序只是希望从Kafka读取数据,不太关心消息offset的处理.同时也希望提供一些语义,例如同一条消息只被某一个Consumer消费(单播)或被 ...
随机推荐
- Expression Blend创建自定义按钮
在 Expression Blend 中,我们可以在美工板上绘制形状.路径和控件,然后修改其外观和行为,从而直观地设计应用程序.Button按钮也是Expression Blend最常用的控件之一,在 ...
- 深入解析Sqlite的完美替代者,android数据库新王者——Realm
写在前面: 又到一年一度七夕虐狗节,看着大家忍受着各种朋友圈和QQ空间还有现实生活中的轮番轰炸,我实在不忍心再在这里给大家补刀,所以我觉得今天不虐狗,继续给大家分享有用的. 如果你比较关心androi ...
- log4net使用手册
1. log4net简介 log4net是.Net下一个非常优秀的开源日志记录组件.log4net记录日志的功能非常强大.它可以将日志分不同的等级,以不同的格式,输出到不同的媒介.Java平台下,它还 ...
- ViewController respondsToSelector 错误的解决方法
原因解析:(来自别人博客分析)某个公共类或系统提供的控件,存在delegate方法,当创建此公共控件的容器类已经销毁,而这个控件对应的服务是在其它run loop中进行的,控件销毁或者需要进行状态通知 ...
- 「译」JUnit 5 系列:环境搭建
原文地址:http://blog.codefx.org/libraries/junit-5-setup/ 原文日期:15, Feb, 2016 译文首发:Linesh 的博客:环境搭建 我的 Gith ...
- Ubuntu下配置apache开启https
一.HTTPS简述随着网络的日常,信息安全越来越重要,传统的网站都是http协议明文传输,而HTTPS协议是由SSL+HTTP协议构建的可进行加密传输.身份认证的网络协议,比http协议安全. 那ht ...
- 用C++实现Linux中shell的ls功能
实现输出当前目录下的文件名 ls功能: 方法一: #include <iostream> #include <algorithm> #include <stdio.h&g ...
- [原创]Macbook Pro Retina 15吋安装Windows 7和Windows 8.1方法
前言 本以为有Bootcamp神器在手,Macbook装Win系统应该是不在话下,没想到着实折腾了一番.期间因为误操作导致OSX也挂掉进不去只得磁盘全部抹掉网络恢复安装.为了让大家少走弯路,提供个人安 ...
- 高级渲染技巧和代码示例 GPU Pro 7
下载代码示例 移动设备正呈现着像素越来越高,屏幕尺寸越来越小的发展趋势. 由于像素着色的能耗非常大,因此 DPI 的增加以及移动设备固有的功耗受限环境为降低像素着色成本带来了巨大的压力. MSAA 有 ...
- [Intel Edison开发板] 05、Edison开发基于MRAA实现IO控制,特别是UART通信
一.前言 下面是本系列文章的前几篇: [Intel Edison开发板] 01.Edison开发板性能简述 [Intel Edison开发板] 02.Edison开发板入门 [Intel Edison ...