1、Miller-Rabin是干啥的?它是用来检测一个数字(一般是很大的数字)是不是素数;

2、Miller-Rabin算法基于的两个定理:

(1)费尔马小定理:如果p是一个素数,且0<a<p,则a^(p-1)%p=1.利用费尔马小定理,对于给定的整数n,可以设计素数判定算法,通过 计算d=a^(n-1)%n来判断n的素性,当d!=1时,n肯定不是素数,当d=1时,n 很可能是素数.

(2)二次探测定理:如果p是一个素数,且0<x<p,则方程x^2%p=1的解为:x=1或x=p-1.

3、利用二次探测定理,可以再利用费尔马小定理计算a^(n-1)%n的过程中增加对整数n的二次探测,一旦发现违背二次探测条件,即得出n不是素数的结论.具体来说是这样的:如果n是素数,则(n-1)必是偶数,因此可令(n-1)=m*(2^q),其中m是正奇数,q是非负整数,考察下面的测试:

a^(2m)%n; a^(4m)%n; …… ;a^(m*2^q)%n

若上面的式子中a^(2^i*m)%n计算出1来,我们就要看看a^(2^(i-1)*m)是不是等于1或者n-1,若既不是1也不是n-1那么我们判断不是素数。

Miller-Rabin素数测试学习小计的更多相关文章

  1. POJ1811_Prime Test【Miller Rabin素数测试】【Pollar Rho整数分解】

    Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...

  2. HDU1164_Eddy&#39;s research I【Miller Rabin素数测试】【Pollar Rho整数分解】

    Eddy's research I Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  3. POJ2429_GCD &amp; LCM Inverse【Miller Rabin素数測试】【Pollar Rho整数分解】

    GCD & LCM Inverse Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9756Accepted: 1819 ...

  4. Miller Rabin素数检测与Pollard Rho算法

    一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是 ...

  5. POJ1811_Prime Test【Miller Rabin素数測试】【Pollar Rho整数分解】

    Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...

  6. Miller Rabin素数检测

    #include<iostream> #include<cstdio> #include<queue> #include<cstring> #inclu ...

  7. ES6学习小计

    1.增加了for of语法,对应C#里的foreach,注意ES5中的 for in只会传递0,1,2.....序号,并且是字符for-of循环语句通过方法调用来遍历各种集合.数组.Maps对象.Se ...

  8. Miller Rabbin素数测试

    步骤 ①先写快速幂取模函数 ②MR算法开始 (1)传入两个参数一个是底数一个是n也就是幂数,如果n是一个合数那么可以判定,这个数一定不是素数 (2)然后开始寻找一个奇数的n去计算,如果最后满足a^d% ...

  9. js正则学习小计

    //元字符 {} () ^ $ . ? + //预定义字符 \d \D \w \W \s \S //量词 {n,m} {n} {n,} + ? * //贪婪和惰性 //反向引用 //分组 //候选 / ...

随机推荐

  1. 将日志搬家到自己的站点 http://nowhereman.cn/

    个人站点同步地址 : http://nowhereman.cn/

  2. ECSHOP模糊分词搜索和商品列表关键字飘红功能

    ECSHOP联想下拉框 1.修改page_header.lbi模版文件,将搜索文本框修改为: <input name="keywords" type="text&q ...

  3. 初涉Node.js

    Node.js的是建立在Chrome的JavaScript的运行时,可方便地构建快速,可扩展的网络应用程序的平台. Node.js使用事件驱动.非阻塞I/ O模型,是轻量级.高效.完美的跨分布式设备运 ...

  4. Hadoop启动异常情况解决方案

    1. 启动时报WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using b ...

  5. 在服务器操作系统上使用TeamViewer

    TeamViewer对于个人或非商业用途提供免费许可证,可以永久使用.但对于公司或商业用途则只提供7天试用期,试用期结束后则不能再使用. 在Windows XP等非服务器操作系统上安装TeamView ...

  6. Django 学习笔记之六 建立一个简单的博客应用程序

    最近在学习django时建立了一个简单的博客应用程序,现在把简单的步骤说一下.本人的用的版本是python 2.7.3和django 1.10.3,Windows10系统 1.首先通过命令建立项目和a ...

  7. VS2010常用插件介绍

    今天在写JS时,写到500多行时,感觉代码已经很难看了.想到C#代码都有折叠功能,是不是JS也有呢.在选项中找了一下,没有相关了的设置功能,于是就上网找.一找可就不得了,发现了好多好用的插件.都可以在 ...

  8. 【POJ】【3537】Crosses and Crosses

    博弈论 相当于放了x的位置,左右4格都不能再放x了,谁无处可放就输. n<=2000 直接枚举后继状态,暴力求SG函数即可. 例: 0000000->x..0000 / .x..000 / ...

  9. Matlab 高斯分布 均匀分布 以及其他分布 的随机数

    Matlab 高斯分布 均匀分布 以及其他分布 的随机数 betarnd 贝塔分布的随机数生成器 binornd 二项分布的随机数生成器 chi2rnd 卡方分布的随机数生成器 exprnd 指数分布 ...

  10. 浅析白盒审计中的字符编码及SQL注入

    尽管现在呼吁所有的程序都使用unicode编码,所有的网站都使用utf-8编码,来一个统一的国际规范.但仍然有很多,包括国内及国外(特别是非英语国家)的一些cms,仍然使用着自己国家的一套编码,比如g ...