OPenGL中三维图形的矩阵变换
对于二维的图形开发,拿简单的图片显示来说,我们主要的目的:就是在一块显示buffer中,不停的把每个像素进行着色,然后就可以绘制出来了.为了速度,很多其他的加速方法,但原理基本上就是这样了. 很直观,也很简单. 就像我们在画布上进行着色,就可以了.
习惯了上面的二维的图形开发,我们来到三维世界,感觉一下子找不到北了. 怎样把颜色绘制上去了?怎样旋转/怎样平移呢?等等问题都一一来了.
如果这时候,你去网上搜的话,有很多网页都会提到只要调用某个函数就可了.(opengl里面有现成的函数)
我们先不跳入到具体的函数里面,而是把三维的图像绘制来整理一遍.
二维的图像显示,我们感觉是在画布上着色,而在三维的图像显示,就相当于用照相机照相了.尽管最后底片上冲印出来的照片是二维的,但这个过程中就不再象我们二维那么简单的去着色了,它里面有一个转换的过程.如果我们知道了这个转换过程,反过来来看相应的函数,就知道为什么是这样了.
坐标系的区分我们就不提了,很多书上都写过,也比较好理解.
一般来说,建模时采用建模坐标系,然后在绘制的时候,先把建模坐标系转换到世界坐标系.
opengl的坐标系, Z的正方向指向屏幕外的(属于右手坐标系),X的正方向指向右, Y的正方向指向上.
我们假设在前面某个点(0,10,-10) 放置了一个茶杯. 我们这样把这个茶杯显示在屏幕上呢? 如果是二维的开发,我们估计直接把茶杯的图片显示出来,而现在在三维上,我们是用相机来拍照,场景里面就不只是一个茶杯了,还有其他的东西,并且茶杯如何体现它的三维的成像,也是一个问题.
既然是拍照,我们就需要把相机的位置调整好,这一般来说就是一个视点(看的地方). 然后我们需要调整相机的朝向,这个也好理解.
剩下的问题是,我相机也选好位置了(0,10,0),方向也选好了(指向(0,0,-1)). 好,这时我们要考虑一个初学者容易想不清楚的问题,茶杯如何在观察屏幕显示出来呢?
上面简单的绘制了一个示意图,为了把Cup绘制到Screen上,我们需要做下面的变换.
首先,我们建立一个观察坐标系,其原点在(ViewPoint)上,然后我们需要一个观察平面(也就是上面的Screen,注意这个和真正屏幕显示出来的有点差别,会有另外一个对应关系,不过也就是二维的变换,我们就不仔细区分). 现在我们就想把Cup的形状在观察平面上投影,注意是投影. 这个投影的结果也就是我们绘制的结果.
既然是投影,就和坐标有关联了,因此我们必须把Cup都统一转换到观察坐标系里面来,这个过程涉及到平移/旋转等操作.
当我们把Cup的坐标和模型都使用了观察坐标系表示之后, 就要开始真正的投影了.
投影从数学角度来说,是比较简单和直观的. 正交投影和透视投影是两种不同的投影.我在这边把它比如成光源.正交投影,就是有一排平行于观察平面的法线的方向的光源,它发出一组平行线,从而不管物体离观察平面的远近,大小都是一样的.
而透视投影,类似于有个点光源,它会发出一组相交于一点的光线,从而相同的大小,近的物体投影的大小大,而远一些的就小一点.
投影之后,就在观察界面有了显示,这就是我们最终的成像了. 观察平面从数学来说是无线大的,从我们实际使用角度,我们需要限制一个大小,这个大小也就决定了,我们那些区域可以显示,其他投影在别的区域就忽略).这就是很多书上说的裁剪窗口.
针对不同的投影,可以计算出每个点(x,y,z)在观察平面的投影的位置(Xview, Yview, Zview). 问题就来了,不同的点有可能映射到相同的位置,怎样来区分??? 我发现前人真的很聪明,他们把这些投影的位置,他们引入了投影转换的概念,使得先前物体的位置的z保持不变,而把(x,y)转换到(Xview,Yview).这样我们就发现,在前面的裁剪空间(人为的选定一个z轴的near和far的区域),这个区域中就保存了很多相同的点(Xview,Yview)只是z坐标不同. 然后我们根据远近的原则,就可以确定最终在观察平面上的点是由那个空间点来决定的. 一般来说,为了统一化,经过投影转换(也就是把x,y转换成最终的映射到观察平面的点(Xview,Yview)),我们就形成了一个统一的区域(这时就相当于正交投影了). 因为这时每个点的x,y坐标和最终映射到观察平面是一致的. 这时统一之后,为了更加快捷操作,可以进一步做规范化处理(使得每个坐标轴都在(-1,1)的范围),然后进行区域裁剪,可见面的绘制,光照等着色处理.这样就形成了最后的成像.
在正交投影时,就类似于我们在观察平面上每个点(Xview,Yview)可以找到所对应的物体(根据zBuffer来进行深度测试等).这样就能使得前面的物体可以挡住后面的物体. 最终就是通过投影变换,把不同的投影都转换成最终的正交投影,然后感觉z轴的不同进行深度测试,从而可以区分那些物体可以先画,那些物体被遮挡. 统一了就好办多了.:)
成像之后,我们在把成像的内容放到屏幕上去显示(这有点类似于照片底片的冲印). 我们观察平面的裁剪窗口的大小和屏幕的大小可以一致,也可以有差别. 但为了使得最终的效果基本一致,所以,一般设置成它们具有相同的 aspect(横纵比 w/h), 从而它们的转换关系就是等比例的放大或者缩小,而不会产生扭曲.
上面这个过程,也就是我们三维显示的过程.那怎样和opengl来关联呢?这就要调用opengl的相关函数了.
网上讲解这些函数的很多,但和我们上面理解的过程如何对应起来的很少,很少.
首先:我们需要把显示的物体转换到观察坐标系
如果物体有自己的建模坐标系,则需要把这个转换到世界坐标系,然后再转换到观察坐标系.
既然坐标系的转换,那我们首先要建立观察坐标系.
因此,我们首先要选取观察坐标系的(原点,z轴的,以及y轴的方向),通过z轴和y轴的方向,可以确定x轴的方向.
这个过程,opengl用
gluLookAt(GLdoble eyex,GLdouble eyey,GLdouble eyez,GLdouble centerx,GLdouble centery,GLdouble centerz,GLdouble upx,GLdouble upy,GLdouble upz);
函数来制定了, 它选取 eyex,eyey, eyez 做为原点(观察坐标系的坐标(用世界坐标系来表示的)),然后centerx, centery,centerz 指定了观察方向(z轴的反方向), upx,upy,upz 指定了y轴的正方向的近似方向(它不一定和z轴方向正交,但可以通过相关的运算,找到正交的Y轴的正方向,从而也可以找到x轴的正方向.主要就是通过向量的点乘和叉乘来计算的)).
指定了这些,从而也就建立了从世界坐标系到观察坐标系的转换的矩阵.opengl的把这个转换的矩阵保存在矩阵堆栈中,从而后面就自动的把其他的世界坐标系转换到观察坐标系里面). 坐标系的转换,也就是物体的描述转换到观察坐标系里面了.从而后面的投影,就统一在观察坐标系里面来计算.
这就是gluLookAt的函数的作用,它封装了世界坐标系到观察坐标系的转换. 它在:glMatrixMode(GL_MODELVIEW);
的模式下调用的.
我们这样来阐述了 gluLookAt的函数的原理和作用.现在应该清楚它是怎样来的,为什么来的吧? 说简单就是为了建立坐标系的转换,把所有的物体都用观察坐标系来描述. 而不是从函数的名称来看,感觉是让我们看某个地方,尽管它有点这方面的含义,但不直观.
OK,我们明白了gluLookAt的作用,调用之后,我们就把坐标系变换的矩阵放入了矩阵栈,后续对物体的位置描述,会通过此矩阵栈进行转换到我们的观察坐标系了.
从这点来说,还是很佩服opengl的设计者的思路,把变换矩阵进入了堆栈来保存,从而在绘制不同的物体时,不需要把它当成额外的参数带入.使得使用起来更加方便/直观. 不过初学者,有些时候就感觉找不到北了,总感觉为何我们调用旋转的函数,和物体有点不相关呢?
好,接下来,我们看看投影这块. 既然,已经转换到观察坐标系了,我们在观察坐标系的世界里,把物体投影在我们的观察平面的中,然后通过裁剪窗口,截取我们需要的那块就可以了.
我们这边以:透视投影为例, 它是怎样来达到这个效果呢?
借用网上的这幅图片,我们来说明gluPerspective,是做什么的,为什么要这么做?
前面我们说过,透视投影,类似于一组聚焦的光线,把物体投影到我们的观察平面上.
现在我们就在想,观察平面在那呢? 投影的聚焦的光线聚焦在那点呢?
如果知道了这个,也就好算,某个位置的点在观察平面上投影了.
Opengl规定,透视投影的聚焦点,在观察坐标系的原点(也就是我们gluLooKAt的指定的观察点),那我们的观察平面在哪呢?裁剪窗口又在哪呢?
这就是opengl里面的gluPerspective要实现的.
gluPerspective(GLdouble fovy,GLdouble aspect,GLdouble zNear,GLdouble zFar)
zNear,zFar是到观察原点的距离(沿着z的负轴方向),因此这两个数应该总数设定成正数.
从网上很多资料都在说,zNear和zFar做为一个深度的裁剪范围,在这个范围内的物体才能进行投影,否则就直接忽略.初学者到这个地方,也能够理解,但从我们上面的问题来看,我们不知道观察平面在哪呢? 其实opengl已经规定了,观察平面就在近平面这里,也就是zNear指定的地方, 观察平面是平行于观察坐标系的(X,Y),因此我们指定z轴,也就指定它的位置.
OK,我们的观察平面已经确定了,那观察平面的裁剪区域呢?
前面我们说过,观察平面的裁剪窗口的 横纵比(w/h)最好和屏幕的一致(估计说的不准确,也就是视口的横纵比,从而只是等比例缩放而已). 因此,gluPerspective的第二个参数就是 aspect了,这样就把裁剪区域的宽度和高度的比例确定了.那剩下的是,我们目前还需要设定高度或者宽度.
gluPerspective的第一个参数是,fovy,它是一个角度.其实通过fovy和zNear能够计算出裁剪窗口的高度.从而我们也就决定了裁剪窗口
的大小了. fovy就是视锥体的上下平面的角度. 裁剪窗口的高度 h = 2 * tan(fovy/2) * zNear.
从而我们也就明白了,上面有个网页上,把它比如成眼睛的睁开度,感觉有点牵强.
从而我们知道,如果它为0的话,那肯定裁剪窗口的高度和宽度都为0,那就没有任何显示了.呵呵
如果它是180度,那就是裁剪窗口的高度就是无穷大,肯定没有实际价值,程序有可能也崩溃了.
如果是178度,那它的裁剪窗口的高度也很大,裁剪的窗口越大,也就意味着它显示的东西越多. 如果对于同一个物体成像来说,它在观察平面的投影是不变的. 但由于底片的大小比我们视口的大,那我们就要等比例缩放了,从而在屏幕上的显示时,我们就感觉它变小了.呵呵.
上面网页上,还有一个截图,如果设置成1度,在很远的地方的一个球,感觉看的很大,很清楚,类似于照相机的镜头拉近了.
它也是一样的原理,本身这个球,在1度还是90度,在我们的观察平面的投影是不变的,而变换的是我们的裁剪窗口的大小.设成1度,基本上裁剪窗口的高度很小,从而我们放到视口上,它就必须同比例的放大.从而就感觉放大了.并且显示的场景的范围也变小了.
好了,到目前位置,我们也就说清楚了gluLooKAt 和 gluPerspective的作用了,还有什么不明白的,请评论?谢谢
视口的调整大小,opengl的函数是glViewPort,这个和二维的就一样了,没有特别需要注意的.
OPenGL中三维图形的矩阵变换的更多相关文章
- CVPR2020:点云分析中三维图形卷积网络中可变形核的学习
CVPR2020:点云分析中三维图形卷积网络中可变形核的学习 Convolution in the Cloud: Learning Deformable Kernels in 3D Graph Con ...
- QT OpenGL绘制三维图形(立方体、圆柱体、圆锥、球体、圆环等等)
本文使用QGLWidget来绘制各种三维基本图形,包括立方体.圆柱体.圆锥.球体.圆环等等,涉及包括基本绘制以及上色.纹理.旋转等操作. 使用的软件版本:QT5.12 + QT Creater4.8. ...
- 在openGL中绘制图形
点的绘制.: glVertex*():星号表示函数要有后缀 该函数 需要放在glBegin函数和glEnd函数之间,glBegin函数的向量指定绘制图元的类型,而glEnd函数没有参数,例如: glB ...
- 二维图形的矩阵变换(三)——在WPF中的应用矩阵变换
原文:二维图形的矩阵变换(三)--在WPF中的应用矩阵变换 UIElement和RenderTransform 首先,我们来看看什么样的对象可以进行变换.在WPF中,用于呈现给用户的对象的基类为Vis ...
- 二维图形的矩阵变换(二)——WPF中的矩阵变换基础
原文:二维图形的矩阵变换(二)--WPF中的矩阵变换基础 在前文二维图形的矩阵变换(一)——基本概念中已经介绍过二维图像矩阵变换的一些基础知识,本文中主要介绍一下如何在WPF中进行矩阵变换. Matr ...
- OpenGL 中的三维纹理操作
#define _CRT_SECURE_NO_WARNINGS #include <gl/glut.h> #include <stdio.h> #include <std ...
- matlab中画三维图形
这里主要讲述两个方法用matlab画三维图形: 1.mesh函数 先看一个简单的例子: x = ::; y = ::; [X, Y] = meshgrid(x, y); Z = zeros(,); Z ...
- 关于opengl中的矩阵平移,矩阵旋转,推导过程理解 OpenGL计算机图形学的一些必要矩阵运算知识
原文作者:aircraft 原文链接:https://www.cnblogs.com/DOMLX/p/12166896.html 为什么引入齐次坐标的变换矩阵可以表示平移呢? - Yu Mao的回答 ...
- OpenGL中glPushMatrix和glPopMatrix的原理
glPushMatrix.glPopMatrix操作事实上就相当于栈里的入栈和出栈. 很多人不明确的可能是入的是什么,出的又是什么. 比如你当前的坐标系原点在你电脑屏幕的左上方.如今你调用glPush ...
随机推荐
- MDX : Non Empty v/s NonEmpty
MDX : Non Empty v/s NonEmpty User Rating: / 50 PoorBest Written by Jason Thomas Friday, 07 May 20 ...
- Coolpy使用教程
---恢复内容开始--- Coolpy使用教程 1.硬件:arduino+ Ethernet Shield w5100 2.下载硬件rom,然后将rom烧进arduino. (下载地址)http:// ...
- ios 控件
反序列化 JSONModel 上拉刷新 下拉加载更多 MJRefresh AFNetworking 2.5 Asynchronous image downloader with cache - SDW ...
- AVG()和to_date()函数的使用
1.一道关于AVG函数和NULL值的面试题 某部门有10个员工,其中9个工资为1000,另一个为NULL,当使用AVG函数取该部门平均工资时,结果应该是多少? A.1000 B.900 我这里把题目再 ...
- linux内核中的get_user和put_user
linux内核中的get_user和put_user 在 内核空间和用户空间交换数据时,get_user和put_user是两个两用的函数.相对于copy_to_user和 copy_from_use ...
- 【nodejs】 npm 注意事项
官网:https://www.npmjs.com/ 1.安装时要切换到nodejs根目录, 否则就会安装到安装时所在的目录 2.要有管理员权限(win),如需指定版本,如npm install ex ...
- 0x04 高级语法
while-endw .while(条件) 循环体(条件满足时执行) .endw repeat-until .repeat 循环体(条件不满足时执行) .until(条件) if-elseif-end ...
- DB天气app冲刺二阶段第五天
昨天什么事情也没做..看了一场哆啦a梦 所以就不算冲刺了.. 今天主要就是做了一下需要用到的图片的整理还有的就是UI主界面需要展示用的素材,发现好多东西都需要搜索半天,虽然这个不是什么技术活..但真的 ...
- 悲惨的Android程序员
Android程序员太悲惨了,连Android官网都访问不了,整个Android程序员的水平都被拉低了一个等级.受不了了.说说悲惨的遭遇吧. 起源:高射炮打苍蝇,驴受伤了 Android一个纯技术网站 ...
- HttpWebRequest,HttpWebResponse的用法和用途
1.用途:HettpWebRequest,HettpWebResponse用途和webServers的作用差不多,都是得到一个页面传过来的值.HttpWebRequest 2.用法:--------- ...