此笔记源于台湾大学林轩田老师《机器学习基石》《机器学习技法

(一)

PLA算法是基本的binary Classification算法。

一个基本的问题是,对于银行,假设我知道用户的年龄、性别、工作、工资,那么应不应该发信用卡给他?

那么它在二维空间里就是一条分割平面的直线。

如何从拥有无限多h的H中选择g?

上述算法的一种实现是:

从上述算法中可以知道:(以二维空间为例)如果没有一条直线能够完全的分开数据点,即:输入数据不是线性可分的,那么上述算法永远不会停止。一种解决方法是:

(二)

假设我们的输入数据是线性可分的,那么这个算法有:

(1)随着迭代次数的增加,Wt越来越完美,直到可以完全分割输入数据集D;

(2)迭代多少次才能完全分开数据集D呢?也即:PLA算法的收敛速度是多少呢?

其中 const= ρ/R,R与ρ为:

下面是证明:

PLA算法小结(优缺点)

(三)Weight Pocket Algorithm

因为我们的错误衡量标准多种多样,当我们更换错误衡量标准如下时:

线性模型(1):Perceptron Learning Algorithm (PLA)的更多相关文章

  1. Perceptron Learning Algorithm (PLA)

    Perceptron - 感知机,是一种二元线性分类器,它通过对特征向量的加权求和,并把这个”和”与事先设定的门槛值(threshold)做比较,高于门槛值的输出1,低于门槛值的输出-1.其中sign ...

  2. 【Perceptron Learning Algorithm】林轩田机器学习基石

    直接跳过第一讲.从第二讲Perceptron开始,记录这一讲中几个印象深的点: 1. 之前自己的直觉一直对这种图理解的不好,老按照x.y去理解. a) 这种图的每个坐标代表的是features:fea ...

  3. Perceptron Learning Algorithm(python实现)

    一.概论 对于给定的n维(两种类型)数据(训练集),找出一个n-1维的面,能够"尽可能"地按照数据类型分开.通过这个面,我们可以通过这个面对测试数据进行预测. 例如对于二维数据,要 ...

  4. 感知机:Perceptron Learning Algorithm

    感知机是支持向量机SVM和神经网络的基础 f = sign(wx+b) 这样看起来好像是LR是差不多的,LR是用的sigmoid函数,PLA是用的sign符号函数,两者都是线性分类器,主要的差别在于策 ...

  5. Deep Learning 17:DBN的学习_读论文“A fast learning algorithm for deep belief nets”的总结

    1.论文“A fast learning algorithm for deep belief nets”的“explaining away”现象的解释: 见:Explaining Away的简单理解 ...

  6. 论文笔记(2):A fast learning algorithm for deep belief nets.

    论文笔记(2):A fast learning algorithm for deep belief nets. 这几天继续学习一篇论文,Hinton的A Fast Learning Algorithm ...

  7. Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks

    Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks S. Chen, C. F. N. Cow ...

  8. Journal of Proteome Research | Clinically Applicable Deep Learning Algorithm Using Quantitative Proteomic Data (分享人:翁海玉)

    题目:Clinically Applicable Deep Learning Algorithm Using Quantitative Proteomic Data 期刊:Journal of Pro ...

  9. 机器学习理论基础学习3.1--- Linear classification 线性分类之感知机PLA(Percetron Learning Algorithm)

    一.感知机(Perception) 1.1 原理: 感知机是二分类的线性模型,其输入是实例的特征向量,输出的是事例的类别,分别是+1和-1,属于判别模型. 假设训练数据集是线性可分的,感知机学习的目标 ...

随机推荐

  1. 【mongoDB运维篇①】用户管理

    3.0版本以前 在mongodb3.0版本以前中,有一个admin数据库, 牵涉到服务器配置层面的操作,需要先切换到admin数据库.即 use admin , 相当于进入超级用户管理模式,mongo ...

  2. 阿里巴巴fastJson

    FastJson解析 一.阿里巴巴FastJson是一个Json处理工具包,包括“序列化”和“反序列化”两部分,它具备如下特征:速度最快,测试表明,fastjson具有极快的性能,超越任其他的Java ...

  3. HTML5入门1---Canvas画布

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  4. 223. Rectangle Area

    题目: Find the total area covered by two rectilinear rectangles in a 2D plane. Each rectangle is defin ...

  5. 机器学习 —— 概率图模型(Homework: Representation)

    前两周的作业主要是关于Factor以及有向图的构造,但是概率图模型中还有一种更强大的武器——双向图(无向图.Markov Network).与有向图不同,双向图可以描述两个var之间相互作用以及联系. ...

  6. underscore.js 一个强大的js函数库

    Underscore提供的100多个函数,主要涉及对Collection.Object.Array.Function的操作: Collections(集合) each, map, reduce, re ...

  7. PHP JSON 操作总结

    由于JSON可以在很多种程序语言中使用,所以我们可以用来做小型数据中转,如:PHP输出JSON字符串供JavaScript使用等.在PHP中可以使用 json_decode() 由一串规范的字符串解析 ...

  8. SqlServer中获取数据库中每个表的行数

    CREATE TABLE #RowCounts(NumberOfRows BIGINT,TableName VARCHAR(128)) EXEC sp_MSForEachTable 'INSERT I ...

  9. Hibernate4.2.2使用Annotation配置

    1.在hibernate官网下载hibernate-release-4.2.2.Final.zip并解压 2.新建一个java project工程(20130619_Hibernate4.2.2_An ...

  10. Android 按键消息处理Android 按键消息处理

    在android系统中,键盘按键事件是由SystemServer服务来管理的:然后在以消息的形式分发给应用程序处理.产生键盘按键事件则是有Linux kernel的相关驱动来实现. 键盘消息有别于其他 ...