题意:给定一个数 n,问你0<= a <=n, 0 <= b <= n,有多少个不同的最简分数。

析:这是一个欧拉函数题,由于当时背不过模板,又不让看书,我就暴力了一下,竟然AC了,才2s,题目是给了3s,很明显是由前面递推,前面成立的,后面的也成立,

只要判定第 i 个有几个,再加前 i-1 个就好,第 i 个就是判断与第 i 个互质的数有多少,这就是欧拉函数了。

代码如下:

这是欧拉函数的。

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <stack>
using namespace std; typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 10000 + 5;
const int mod = 1e9;
const char *mark = "+-*";
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, 1, 0, -1};
int n, m;
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
}
int ans[maxn];
int phi[maxn]; void init(){
memset(phi, 0, sizeof(phi));
phi[1] = 1;
for(int i = 2; i <= 10000; ++i) if(!phi[i])
for(int j = i; j <= 10000; j += i){
if(!phi[j]) phi[j] = j;
phi[j] = phi[j] / i * (i-1);
} ans[2] = 3;
for(int i = 3; i <= 10000; ++i)
ans[i] = ans[i-1] + phi[i];
} int main(){
init();
int T; cin >> T;
while(T--){
scanf("%d %d", &m, &n);
printf("%d %d\n", m, ans[n]);
}
return 0;
}

  

这是我暴力的:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <stack>
using namespace std; typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 100 + 5;
const int mod = 1e9;
const char *mark = "+-*";
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, 1, 0, -1};
int n, m;
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
}
int ans[10005]; int main(){
ans[1] = 2; ans[2] = 3;
for(int i = 3; i <= 10000; ++i){
int cnt = 0;
for(int j = 1; j <= i/2; ++j){
if(__gcd(j, i) == 1) ++cnt;
}
ans[i] = ans[i-1] + 2*cnt;
}
int T; cin >> T;
while(T--){
scanf("%d %d", &m, &n);
printf("%d %d\n", m, ans[n]);
}
return 0;
}

  

UVaLive 7362 Farey (数学,欧拉函数)的更多相关文章

  1. poj2478 Farey Sequence (欧拉函数)

    Farey Sequence 题意:给定一个数n,求在[1,n]这个范围内两两互质的数的个数.(转化为给定一个数n,比n小且与n互质的数的个数) 知识点: 欧拉函数: 普通求法: int Euler( ...

  2. 【BZOJ4173】数学 欧拉函数神题

    [BZOJ4173]数学 Description Input 输入文件的第一行输入两个正整数 . Output 如题 Sample Input 5 6 Sample Output 240 HINT N ...

  3. POJ2478 Farey Sequence —— 欧拉函数

    题目链接:https://vjudge.net/problem/POJ-2478 Farey Sequence Time Limit: 1000MS   Memory Limit: 65536K To ...

  4. poj 2478 Farey Sequence(欧拉函数是基于寻求筛法素数)

    http://poj.org/problem?id=2478 求欧拉函数的模板. 初涉欧拉函数,先学一学它主要的性质. 1.欧拉函数是求小于n且和n互质(包含1)的正整数的个数. 记为φ(n). 2. ...

  5. NOIP模拟:切蛋糕(数学欧拉函数)

    题目描述  BG 有一块细长的蛋糕,长度为 n. 有一些人要来 BG 家里吃蛋糕, BG 把蛋糕切成了若干块(整数长度),然后分给这些人. 为了公平,每个人得到的蛋糕长度和必须相等,且必须是连续的一段 ...

  6. poj2478 Farey Sequence 欧拉函数的应用

    仔细看看题目,按照题目要求 其实就是 求 小于等于n的 每一个数的 欧拉函数值  的总和,为什么呢,因为要构成 a/b 然后不能约分  所以 gcd(a,b)==1,所以  分母 b的 欧拉函数值   ...

  7. hdu1787 GCD Again poj 2478 Farey Sequence 欧拉函数

    hdu1787,直接求欧拉函数 #include <iostream> #include <cstdio> using namespace std; int n; int ph ...

  8. UVA12995 Farey Sequence [欧拉函数,欧拉筛]

    洛谷传送门 Farey Sequence (格式太难调,题面就不放了) 分析: 实际上求分数个数就是个幌子,观察可以得到,所求的就是$\sum^n_{i=2}\phi (i)$,所以直接欧拉筛+前缀和 ...

  9. 【转】UVALive 5964 LCM Extreme --欧拉函数

    题目大意:求lcm(1,2)+lcm(1,3)+lcm(2,3)+....+lcm(1,n)+....+lcm(n-2,n)+lcm(n-1,n)解法:设sum(n)为sum(lcm(i,j))(1& ...

随机推荐

  1. find-all-duplicates-in-an-array(典型的数组中的重复数,不错,我做出来了,可是发现别人有更好的做法)

    https://leetcode.com/problems/find-all-duplicates-in-an-array/ 典型的数组中的重复数.这次是通过跳转法,一个个跳转排查的.因为查过的不会重 ...

  2. iOS开发:mac使用svn管理项目

    记录mac下常用的svn命令: 1.检出项目: svn checkout .../svn/projectName --username=xxx --password=xxx //将ip换成svn服务器 ...

  3. MySQL Timeout解析

    “And God said, Let there be network: and there was timeout”在使用MySQL的过程中,你是否遇到了众多让人百思不得其解的Timeout?那么这 ...

  4. return File

    public ActionResult DownloadMessage() { string strExportData = "无数据!"; byte[] data = Syste ...

  5. 使用Spring时遇到的bug及解决

    1.myeclipse中Spring 不给提示 解决:(1)window – preferences – myeclipse – files and editors – xml – xml catal ...

  6. ionic cordova plugin for ios

    源代码结构目录: payplugin: |_src |_android |_PayPlugin.java |_ios |_CDVPayPlugin.h |_CDVPayPlugin.m |_www | ...

  7. 实时通讯库 libre/librem/restund/baresip

    http://www.creytiv.com/ 源码下载 libre Toolkit library for asynchronous network IO with protocol stacks ...

  8. Ubuntu消息菜单(MessagingMenu)API

    应用程序可以注册在消息菜单里显示消息,它也可以使用全局聊天状态项目. 注册 应用程序要在消息菜单里显示消息,必须满足以下条件: $HOME/.config/indicators/messages/ap ...

  9. HDU 2056 Rectangles

    Rectangles Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  10. hdu 2544最短路——最短路的初次总结 UESTC 6th Programming Contest Online

    这是一道标准的模板题,所以拿来作为这一段时间学习最短路的总结题目. 题意很简单: 有多组输入数据,每组的第一行为两个整数n, m.表示共有n个节点,m条边. 接下来有m行,每行三个整数a, b, c. ...