Highways

题目链接:

http://acm.hust.edu.cn/vjudge/contest/124434#problem/G

Description

The island nation of Flatopia is perfectly flat. Unfortunately, Flatopia has a very poor system of public highways. The Flatopian government is aware of this problem and has already constructed a number of highways connecting some of the most important towns. However, there are still some towns that you can't reach via a highway. It is necessary to build more highways so that it will be possible to drive between any pair of towns without leaving the highway system.

Flatopian towns are numbered from 1 to N and town i has a position given by the Cartesian coordinates (xi, yi). Each highway connects exaclty two towns. All highways (both the original ones and the ones that are to be built) follow straight lines, and thus their length is equal to Cartesian distance between towns. All highways can be used in both directions. Highways can freely cross each other, but a driver can only switch between highways at a town that is located at the end of both highways.

The Flatopian government wants to minimize the cost of building new highways. However, they want to guarantee that every town is highway-reachable from every other town. Since Flatopia is so flat, the cost of a highway is always proportional to its length. Thus, the least expensive highway system will be the one that minimizes the total highways length.

Input

The input consists of two parts. The first part describes all towns in the country, and the second part describes all of the highways that have already been built.

The first line of the input file contains a single integer N (1 <= N <= 750), representing the number of towns. The next N lines each contain two integers, xi and yi separated by a space. These values give the coordinates of i th town (for i from 1 to N). Coordinates will have an absolute value no greater than 10000. Every town has a unique location.

The next line contains a single integer M (0 <= M <= 1000), representing the number of existing highways. The next M lines each contain a pair of integers separated by a space. These two integers give a pair of town numbers which are already connected by a highway. Each pair of towns is connected by at most one highway.

Output

Write to the output a single line for each new highway that should be built in order to connect all towns with minimal possible total length of new highways. Each highway should be presented by printing town numbers that this highway connects, separated by a space.

If no new highways need to be built (all towns are already connected), then the output file should be created but it should be empty.

Sample Input

9

1 5

0 0

3 2

4 5

5 1

0 4

5 2

1 2

5 3

3

1 3

9 7

1 2

Sample Output

1 6

3 7

4 9

5 7

8 3

##题意:

求最小的花费使得各点联通. 初始时有一些已建的边.
最后要输出增加的边的端点.


##题解:

最小生成树.
把已建的边的长度赋成零后跑一遍kruskal,同时把添加到的长度不为零的边输出.

这题1000ms的时限,POJ上C++超时,G++只要400ms,太可怕了.


##代码:
``` cpp
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define LL long long
#define eps 1e-8
#define maxn 755
#define mod 100000007
#define inf 0x3f3f3f3f
#define IN freopen("in.txt","r",stdin);
using namespace std;

struct node{

int left,right,cost;

}road[maxn*maxn];

int cmp(node x,node y) {return x.cost<y.cost;}

int p[maxn],m,n;

int find(int x) {return p[x]=(p[x]==x? x:find(p[x]));}

LL kruskal()

{

LL ans = 0;

for(int i=1;i<=n;i++) p[i]=i;

sort(road+1,road+m+1,cmp);

for(int i=1;i<=m;i++)

{

int x=find(road[i].left);

int y=find(road[i].right);

if(x!=y)

{

ans += (LL)road[i].cost;

if(road[i].cost != 0)

printf("%d %d\n", road[i].left, road[i].right);

p[x]=y;

}

}

return ans;

}

int x[maxn],y[maxn];

int dis[maxn][maxn];

int main(int argc, char const *argv[])

{

//IN;

scanf("%d", &n);
m = 0;
//memset(road,0,sizeof(road)); for(int i=1; i<=n; i++) {
scanf("%d %d", &x[i],&y[i]);
} for(int i=1; i<=n; i++) {
for(int j=i; j<=n; j++) {
dis[i][j] = (x[i]-x[j])*(x[i]-x[j]) + (y[i]-y[j])*(y[i]-y[j]);
}
} int q; scanf("%d", &q);
while(q--) {
int x,y; scanf("%d %d", &x,&y);
dis[x][y] = dis[y][x] = 0;
} for(int i=1; i<=n; i++) {
for(int j=i+1; j<=n; j++) {
road[++m].left = i;
road[m].right = j;
road[m].cost = dis[i][j];
}
} int ans=kruskal(); return 0;

}

POJ 1751 Highways (最小生成树)的更多相关文章

  1. POJ 1751 Highways (最小生成树)

    Highways Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Submit Sta ...

  2. POJ 1751 Highways(最小生成树Prim普里姆,输出边)

    题目链接:点击打开链接 Description The island nation of Flatopia is perfectly flat. Unfortunately, Flatopia has ...

  3. POJ 1751 Highways 【最小生成树 Kruskal】

    Highways Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 23070   Accepted: 6760   Speci ...

  4. POJ 1751 Highways(最小生成树&Prim)题解

    思路: 一开始用Kruskal超时了,因为这是一个稠密图,边的数量最惨可能N^2,改用Prim. Prim是这样的,先选一个点(这里选1)作为集合A的起始元素,然后其他点为集合B的元素,我们要做的就是 ...

  5. POJ 1751 Highways (kruskal)

    题目链接:http://poj.org/problem?id=1751 题意是给你n个点的坐标,然后给你m对点是已经相连的,问你还需要连接哪几对点,使这个图为最小生成树. 这里用kruskal不会超时 ...

  6. (poj) 1751 Highways

    Description The island nation of Flatopia is perfectly flat. Unfortunately, Flatopia has a very poor ...

  7. POJ 2485 Highways(最小生成树+ 输出该最小生成树里的最长的边权)

                                                                                                         ...

  8. POJ 2485 Highways 最小生成树 (Kruskal)

    Description The island nation of Flatopia is perfectly flat. Unfortunately, Flatopia has no public h ...

  9. POJ 1751 Highways (ZOJ 2048 ) MST

    http://poj.org/problem?id=1751 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2048 题目大 ...

随机推荐

  1. Java中boolean型变量的默认值问题

    1.首先分析Java中的三种不同变量的区别,如下表所示   概念 默认值 其他 类变量 也叫静态变量,是类中独立于方法之外的变量 用static 修饰 有默认初始值,系统自动初始化. 如boolean ...

  2. 【Todo】JS跨域访问问题的解决

    做双十一,需要在主会场页面,嵌入我们产品的JS豆腐块.而这个豆腐块需要调用我们后端的数据接口,涉及跨域访问. 参考 http://www.cnblogs.com/2050/p/3191744.html ...

  3. HDU 4965 矩阵快速幂

    顺手写了下矩阵类模板 利用到矩阵乘法的交换律 (A*B)^n == A * (B*A)^n-1 *B #include <cstdio> #include <cstring> ...

  4. pfx 转 snk

    最近用 fody 加在c#工程内,但是签名只认snk ,好像是mono cecil的问题,都不认pfx,重新生成snk文件,publishkey又要变了, 底层dll引用的地方太多,要改好多cspro ...

  5. 【unity3D】鼠标控制camera的移动、放大(俯视浏览效果、LOL摄像机移动效果)

    在Unity开发中,用鼠标滚轮来实现摄像机的视野范围,鼠标左键拖拉控制摄像机的移动,代码如下: 1.俯视浏览效果 using UnityEngine; using System.Collections ...

  6. java 访问器方法中对象引用的问题

    "注意不要编写返回引用可变对象的访问器方法".因为会破坏类的封装性,引用的内容可能会被改变,产生业务逻辑上的错误. 什么是可变对象? 先要搞清楚java中值传递和引用传递的问题,总结如下: 1.对象就 ...

  7. 一次library cache pin故障的解决过程

    内容如下: 今天接到同事的电话,说他的一个存储过程已经run了一个多小时了,还在继续run,他觉得极不正常,按道理说不应该run这么长时间. 我说那我去看一下吧. 这个库是一个AIX上的10.2.0. ...

  8. ByteBuffer用法小结

    在NIO中,数据的读写操作始终是与缓冲区相关联的.读取时信道(SocketChannel)将数据读入缓冲区,写入时首先要将发送的数据按顺序填入缓冲区.缓冲区是定长的,基本上它只是一个列表,它的所有元素 ...

  9. function 中定义函数的默认返回值,

    result有默认值的int类型的为0,string类型的为‘’,tobject类型的为nil等等

  10. 【原创】利用Windows系统日志统计员工每天上下班考勤时间

    利用Windows系统日志统计员工每天上下班考勤时间(命令行参数为统计月份): using System; using System.Collections.Generic; using System ...