Children of the Candy Corn
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 8046   Accepted: 3518

Description

The cornfield maze is a popular Halloween treat. Visitors are shown the entrance and must wander through the maze facing zombies, chainsaw-wielding psychopaths, hippies, and other terrors on their quest to find the exit.

One popular maze-walking strategy guarantees that the visitor will eventually find the exit. Simply choose either the right or left wall, and follow it. Of course, there's no guarantee which strategy (left or right) will be better, and the path taken is seldom the most efficient. (It also doesn't work on mazes with exits that are not on the edge; those types of mazes are not represented in this problem.)

As the proprieter of a cornfield that is about to be converted into a maze, you'd like to have a computer program that can determine the left and right-hand paths along with the shortest path so that you can figure out which layout has the best chance of confounding visitors.

Input

Input to this problem will begin with a line containing a single integer n indicating the number of mazes. Each maze will consist of one line with a width, w, and height, h (3 <= w, h <= 40), followed by h lines of w characters each that represent the maze layout. Walls are represented by hash marks ('#'), empty space by periods ('.'), the start by an 'S' and the exit by an 'E'.

Exactly one 'S' and one 'E' will be present in the maze, and they will always be located along one of the maze edges and never in a corner. The maze will be fully enclosed by walls ('#'), with the only openings being the 'S' and 'E'. The 'S' and 'E' will also be separated by at least one wall ('#').

You may assume that the maze exit is always reachable from the start point.

Output

For each maze in the input, output on a single line the number of (not necessarily unique) squares that a person would visit (including the 'S' and 'E') for (in order) the left, right, and shortest paths, separated by a single space each. Movement from one square to another is only allowed in the horizontal or vertical direction; movement along the diagonals is not allowed.

Sample Input

2
8 8
########
#......#
#.####.#
#.####.#
#.####.#
#.####.#
#...#..#
#S#E####
9 5
#########
#.#.#.#.#
S.......E
#.#.#.#.#
#########

Sample Output

37 5 5
17 17 9
#include<iostream>
#include<stdio.h>
using namespace std;
int w,h,ex,ey,sx,sy;
int map[100][100],can[100][100];
struct vid{ int x,y,step;
}queue[5000];
int zan[4][2]={{-1,0},{0,1},{1,0},{0,-1}};
int dirl[4][2]={0,-1,-1,0,0,1,1,0},dirr[4][2]={0,1,1,0,0,-1,-1,0};
int dfsr(int dstep,int x,int y,int di )
{
int i,temp1,temp2; for(i=0;i<4;i++)
{
temp1=x+dirr[i][0];
temp2=y+dirr[i][1]; if((temp1>=0)&&(temp1<h)&&(temp2>=0)&&(temp2<w))
{
if(dfsr(dstep+1,x+dirr[i][0],y+dirr[i][1],i))
return dstep;
else
return 0;
} }
return 0; }
int dfsl(int dstep,int x,int y,int di )
{ int i,temp1,temp2; for(i=0;i<4;i++)
{
temp1=x+dirl[i][0];
temp2=y+dirl[i][1]; if((temp1>=0)&&(temp1<h)&&(temp2>=0)&&(temp2<w))
{
if(dfsl(dstep+1,temp1,temp2,i))
return dstep;
else
return 0;
} } return 0;
}
int bfs()
{ if (sx == ex && sy == ey)
{ return 1;
}
int t,ww,x,y,t1,t2;
t=ww=1;
queue[t].x=sx;
queue[t].y=sy;
queue[t].step=0;
can[sx][sy]=1;
while(t<=ww&&!can[ex][ey])
{ x=queue[t].x;
y=queue[t].y;
for(int i=0;i<4;i++)
if((!map[x+zan[i][0]][y+zan[i][1]])&&(!can[x+zan[i][0]][y+zan[i][1]]))
{ t1=x+zan[i][0];
t2=y+zan[i][1];
if(t1>=0&&(t1<h)&&(t2>=0)&&(t2<w)&&(!map[t1][t2])&&(!can[t1][t2]))
{ queue[++ww].x=t1;
queue[ww].y=t2;
queue[ww].step=queue[t].step+1;
can[t1][t2]=1;
}
}
t++;
}
return queue[ww].step+1;
}
int main ()
{
int t;
char c;
scanf("%d",&t);
getchar();
while(t--)
{ scanf("%d%d",&w,&h);
getchar();
for(int i=0;i<h;i++)
{
for(int j=0;j<w;j++)
{
can[i][j]=0;
c=getchar();
if(c=='#')
map[i][j]=1;
else if(c=='.')
map[i][j]=0;
else if(c=='S')
{
map[i][j]=0;
sx=i,sy=j;
}
else
if(c=='E')
{
map[i][j]=0;
ex=i;ey=j;
}
}
getchar();
}
// init();
// dfsr();
// printf("%d ",bfs());
printf("%d %d %d\n",dfsl(0,sx,sy,0)+1,dfsr(0,sx,sy,0)+1,bfs());
} return 0;
}
												

poj3083的更多相关文章

  1. ACM/ICPC 之 靠墙走-DFS+BFS(POJ3083)

    //POJ3083 //DFS求靠左墙(右墙)走的路径长+BFS求最短路 //Time:0Ms Memory:716K #include<iostream> #include<cst ...

  2. POJ3083——Children of the Candy Corn(DFS+BFS)

    Children of the Candy Corn DescriptionThe cornfield maze is a popular Halloween treat. Visitors are ...

  3. POJ3083 Children of the Candy Corn(搜索)

    题目链接. 题意: 先沿着左边的墙从 S 一直走,求到达 E 的步数. 再沿着右边的墙从 S 一直走,求到达 E 的步数. 最后求最短路. 分析: 最短路好办,关键是沿着墙走不太好想. 但只要弄懂如何 ...

  4. poj3083走玉米地问题

    走玉米地迷宫,一般有两种简单策略,遇到岔路总是优先沿着自己的左手方向,或者右手方向走.给一个迷宫,给出这两种策略的步数,再给出最短路径的长度. ######### #.#.#.#.# S....... ...

  5. POJ3083 Children of the Candy Corn(Bfs + Dfs)

    题意:给一个w*h的迷宫,其中矩阵里面 S是起点,E是终点,“#”不可走,“.”可走,而且,S.E都只会在边界并且,不会在角落,例如(0,0),输出的话,每组数据就输出三个整数,第一个整数,指的是,以 ...

  6. POJ-3083 Children of the Candy Corn (BFS+DFS)

    Description The cornfield maze is a popular Halloween treat. Visitors are shown the entrance and mus ...

  7. DFS+BFS(POJ3083)

    题目链接:http://poj.org/problem?id=3083 解题报告:这个题目,搜最短路,没有什么问题.优先走左边,走右边,有很多说法,思路大概都相同,都是记录当前朝向,根据数学公式(i+ ...

  8. poj3083 Children of the Candy Corn BFS&&DFS

    Children of the Candy Corn Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11215   Acce ...

  9. 基础BFS+DFS poj3083

    //满基础的一道题 //最短路径肯定是BFS. //然后靠右,靠左,就DFS啦 //根据前一个状态推出下一个状态,举靠左的例子,如果一开始是上的话,那么他的接下来依次就是 左,上 , 右 , 下 // ...

随机推荐

  1. hdu3037 Lucas定理

    Lucas定理 Lucas(n,m,p)=c(n%p,m%p)* Lucas(n/p,m/p,p),其中lucas(n,m,p)=C(n,m)%p (这里的除号是整除) 证明——百度百科 题意:求n个 ...

  2. 类handler

    /** The handler class is the interface for dynamically loadable storage engines. Do not add ifdefs a ...

  3. 自定义ShareDialog视图

    1. share_item.xml <?xml version="1.0" encoding="utf-8"?> <RelativeLayou ...

  4. Linux Watchdog Test Program

    /*********************************************************************** * Linux Watchdog Test Progr ...

  5. 【C#学习笔记】载入图片并居中

    using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...

  6. jQuery点击div其他地方隐藏div

    $(document).bind("click",function(e){ var target = $(e.target); ){ $("#regionlist&quo ...

  7. MySQL基础之第13章 MySQL函数

    13.1.数学函数 随机数可能会用到,其他基本无视. 13.2.字符串函数 重点CONCAT(S1,S2….) 13.3.日期和时间函数 一.MySQL 获得当前日期时间 函数 1.1 获得当前日期+ ...

  8. Linux Kernel 4.8分支第4个候选版本发布

    导读 今天,大神Linus Torvalds宣布了Linux 4.8分支的第四个候选版本,该候选版本在提供常规驱动更新.架构改善和部分KVM调整之外最大的新功能就是修复了英特尔Skylake电源管理B ...

  9. 网站sqlserver提权操作

    在入侵过程中,得到SQLserver的权限,想进一步得到system权限的方法总结 *************************** 利用xp_cmdshell **************** ...

  10. 对LR analysis的平均事务响应时间和summary中时间值不同的解释

    最近在做性能测试对LR结果分析时,又碰到了关于summary里与平均事务响应时间中各交易的响应时间值不同的问题.在此做个记录. 若交易中设置了思考时间,分析时需要注意查看是否过滤思考时间. 设置是否包 ...