题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2624

题目大意:popo要将给定数量的灯变成自己想要的颜色,有一种魔法开关,可以将一连串的灯同时变成同一个颜色。给定灯的数量和popo想要实现的状态,求最小步数

Sample Input

5
RGBGR
4
RGRG
7
ABACADA
0

Sample Output

3
3
4

分析:令f[x][y]表示从第 x 个灯到第 y 个灯变成目标状态的最小花费,则初始时为最大值。而f[x][x]=1。

  则f[x][y] =min{ f[x][k-1]+f[k][y] | x<k<y}

  当第x,y个灯的目标状态是同一颜色时,就可以一次性将2个灯变成想要的状态

代码如下:

 # include<iostream>
# include<cstdio>
# include<cstring>
#define MAX 0xFFFFFF
using namespace std;
char str[];
int f[][],n;
int dfs(int x,int y)
{
int i;
int min=y-x+,temp;
for(i=x+; i<=y; i++)
{
if(f[x][i-]==MAX)
f[x][i-]=dfs(x,i-); if(f[i][y]==MAX)
f[i][y]=dfs(i,y); if(min>f[x][i-]+f[i][y])
min=f[x][i-]+f[i][y];
}
if(str[x]==str[y])
{
if(x+<n)
{
if(f[x+][y]==MAX)
temp=dfs(x+,y);
else
temp=f[x+][y];
}
else
temp=;
if(min>temp)
min=temp;
if(y->)
{
if(f[x][y-]==MAX)
temp=dfs(x,y-);
else
temp=f[x][y-];
}
else
temp=;
if(min>temp)
min=temp;
if(x+<n && y->)
{
if(f[x+][y-]==MAX)
temp=dfs(x+,y-)+; //额外增加一步将x,y2个灯变成目标状态的步骤
else
temp=f[x+][y-]+;
}
else
temp=;
if(min>temp)
min=temp;
}
f[x][y]=min;
return f[x][y]; }
int main ()
{
int i,j;
while(scanf("%d",&n) && n)
{
scanf("%s",str);
for(i=; i<n; i++)
for(j=i+; j<n; j++)
{
f[i][j]=MAX;
f[j][i]=;
}
for(i=; i<n; i++)
f[i][i]=; printf("%d\n",dfs(,n-));
}
return ;
}

OJ返回”Non-zero Exit Code“这种错误,是因为最后没有写return 0;或者写成了return 1;之类的,只要改成return 0;就可以了

ZOJ 2624 Popo's Lamps(DP 记忆化搜索)的更多相关文章

  1. 【bzoj5123】[Lydsy12月赛]线段树的匹配 树形dp+记忆化搜索

    题目描述 求一棵 $[1,n]$ 的线段树的最大匹配数目与方案数. $n\le 10^{18}$ 题解 树形dp+记忆化搜索 设 $f[l][r]$ 表示根节点为 $[l,r]$ 的线段树,匹配选择根 ...

  2. 【BZOJ】1415 [Noi2005]聪聪和可可 期望DP+记忆化搜索

    [题意]给定无向图,聪聪和可可各自位于一点,可可每单位时间随机向周围走一步或停留,聪聪每单位时间追两步(先走),问追到可可的期望时间.n<=1000. [算法]期望DP+记忆化搜索 [题解]首先 ...

  3. [题解](树形dp/记忆化搜索)luogu_P1040_加分二叉树

    树形dp/记忆化搜索 首先可以看出树形dp,因为第一个问题并不需要知道子树的样子, 然而第二个输出前序遍历,必须知道每个子树的根节点,需要在树形dp过程中记录,递归输出 那么如何求最大加分树——根据中 ...

  4. poj1664 dp记忆化搜索

    http://poj.org/problem?id=1664 Description 把M个相同的苹果放在N个相同的盘子里,同意有的盘子空着不放,问共同拥有多少种不同的分法?(用K表示)5.1.1和1 ...

  5. 状压DP+记忆化搜索 UVA 1252 Twenty Questions

    题目传送门 /* 题意:给出一系列的01字符串,问最少要问几个问题(列)能把它们区分出来 状态DP+记忆化搜索:dp[s1][s2]表示问题集合为s1.答案对错集合为s2时,还要问几次才能区分出来 若 ...

  6. ACM International Collegiate Programming Contest, Tishreen Collegiate Programming Contest (2017)- K. Poor Ramzi -dp+记忆化搜索

    ACM International Collegiate Programming Contest, Tishreen Collegiate Programming Contest (2017)- K. ...

  7. POJ 1088 DP=记忆化搜索

    话说DP=记忆化搜索这句话真不是虚的. 面对这道题目,题意很简单,但是DP的时候,方向分为四个,这个时候用递推就好难写了,你很难得到当前状态的前一个真实状态,这个时候记忆化搜索就派上用场啦! 通过对四 ...

  8. zoj 3644(dp + 记忆化搜索)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4834 思路:dp[i][j]表示当前节点在i,分数为j的路径条数,从 ...

  9. loj 1044(dp+记忆化搜索)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=26764 思路:dp[pos]表示0-pos这段字符串最少分割的回文 ...

  10. DP(记忆化搜索) + AC自动机 LA 4126 Password Suspects

    题目传送门 题意:训练指南P250 分析:DFS记忆化搜索,范围或者说是图是已知的字串构成的自动机图,那么用 | (1 << i)表示包含第i个字串,如果长度为len,且st == (1 ...

随机推荐

  1. php中带mb的字符串处理函数

    int strlen ( string $string ) int mb_strlen ( string $str [, string $encoding ] ) encoding参数为字符编码.如果 ...

  2. 如何检查机器是否因为装了Windows更新而需要重新启动

    博客搬到了fresky.github.io - Dawei XU,请各位看官挪步.最新的一篇是:如何检查机器是否因为装了Windows更新而需要重新启动.

  3. 【C++深入浅出】设计模式学习之简单工厂

    看大话设计模式中大牛对小菜的精辟点评,也写了一个计算器程序,并跟着点评一路改良,还是不过瘾,应用了类模板和异常捕捉机制重写了程序. 本文不能算干货,恰当的比方是饭前甜点,吃一口有点味.有点意思,总归太 ...

  4. iOS开发- 文件共享(利用iTunes导入文件, 并且显示已有文件)

    实现过程: 1.在应用程序的Info.plist文件中添加Application supports iTunes file sharing键,并将键值设置为YES. - (void)viewDidLo ...

  5. 2014 ACM/ICPC 鞍山赛区现场赛 D&amp;I 解题报告

    鞍山现场赛结束了呢-- 我们出的是D+E+I三道题-- 吾辈AC掉的是D和I两道,趁着还记得.先在这里写一写我写的两道水题D&I的解题报告吧^_^. D题的意思呢是说星云内有一堆排成一条直线的 ...

  6. 用Bootstrap 写了个站点

    近期发现vdceye的站点有些丑陋,就找了一个bootstrap工具,又一次把站点写了一遍 这个工具果然好用 http://vdceye.com/

  7. PHP中的正则表达式函数preg_

    preg_match();     //用于正则表达式的匹配,且只匹配一次 preg_match_all();//用于正则表达式的匹配,会对所有符合规则的都进行匹配 preg_replace();   ...

  8. Jordan Lecture Note-2: Maximal Margin Classifier

    Maximal Margin Classifier Logistic Regression 与 SVM 思路的不同点:logistic regression强调所有点尽可能远离中间的那条分割线,而SV ...

  9. 第十一章 Function类型

    在ECMAScript中,Function(函数)类型实际上是对象.每个函数也是Function类型的实例,而且都与其它引用类型一样具有属性和方法.由于是函数对象,因此函数名实际上也是一个指向函数对象 ...

  10. php笔记01:php基本语法格式

    1. <?php ....... ?> 2. <script laugnage="php"> ....... </script> 3. < ...