题目链接:

题目

D. Remainders Game

time limit per test 1 second

memory limit per test 256 megabytes

问题描述

Today Pari and Arya are playing a game called Remainders.

Pari chooses two positive integer x and k, and tells Arya k but not x. Arya have to find the value . There are n ancient numbers c1, c2, ..., cn and Pari has to tell Arya if Arya wants. Given k and the ancient values, tell us if Arya has a winning strategy independent of value of x or not. Formally, is it true that Arya can understand the value for any positive integer x?

Note, that means the remainder of x after dividing it by y.

输入

The first line of the input contains two integers n and k (1 ≤ n,  k ≤ 1 000 000) — the number of ancient integers and value k that is chosen by Pari.

The second line contains n integers c1, c2, ..., cn (1 ≤ ci ≤ 1 000 000).

输出

Print "Yes" (without quotes) if Arya has a winning strategy independent of value of x, or "No" (without quotes) otherwise.

样例

input

4 5

2 3 5 12

output

Yes

input

2 7

2 3

output

No

题意

给你n个数和一个k,求x%k的值,没有告诉你x是多少,只告诉你能够计算x%ci的值。问能不能根据这n次测试唯一确定x%k。

题解

思路1:

结论:无法唯一确定x%k <==> k不能整除lcm(c1,...,cn);

充分性:

无法唯一确定x%k --> 存在两个数x1,x2对于任意的ci取余的值都相等,对k取值的值却不等。

  • x1,x2对任意的ci取余都相等 --> ci|(x1-x2) --> lcm(ci)|(x1-x2).
  • x1,x2对k取余的值不等 --> k不整除(x1-x2) --> k不整除lcm(ci)

必要性:

我们令x1=2*lcm(ci),x2=lcm(ci),则易知有x1,x2对于任意的ci取余的值都相等,且因为k不能整除lcm(ci),所以x1,x2对k取余的值不等。 所以ci不能确定x%k的值。

思路2:

题目已经给我们n个线性同余方程:x%c[i]==a[i]%c[i]。

由于a数组是由我们任意选择的,所以我们可以构造所有的a相等,从而使得对于任意的i,j,有a[i]%(gcd(ci,cj))等于a[j]%(gcd(ci,cj))。这样,由中国剩余定理就可以知道x%(lcm(c1,...,cn))有唯一解了。 那么我们只要使得k能整除lcm(c1,...,cn)那么易知x%k的值也是固定的。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std; typedef __int64 LL; LL n, k; LL gcd(LL a, LL b) { return b == 0 ? a : gcd(b, a%b); }
LL lcm(LL a, LL b) { return a*b / gcd(a, b); } int main() {
scanf("%I64d%I64d", &n, &k);
LL lcm_ci = 1;
bool su = 0;
for (int i = 1; i <= n; i++) {
LL x;
scanf("%I64d", &x);
lcm_ci = lcm(lcm_ci, x);
lcm_ci = gcd(k, lcm_ci);
if (lcm_ci == k) {
su = 1; break;
}
}
if (su) puts("Yes");
else puts("No");
return 0;
}

Codeforces Round #360 (Div. 2) D. Remainders Game 中国剩余定理的更多相关文章

  1. Codeforces Round #360 (Div. 2) D. Remainders Game

    D. Remainders Game time limit per test 1 second memory limit per test 256 megabytes input standard i ...

  2. Codeforces Round #360 (Div. 2) D. Remainders Game 数学

    D. Remainders Game 题目连接: http://www.codeforces.com/contest/688/problem/D Description Today Pari and ...

  3. Codeforces Round #360 (Div. 1) D. Dividing Kingdom II 暴力并查集

    D. Dividing Kingdom II 题目连接: http://www.codeforces.com/contest/687/problem/D Description Long time a ...

  4. Codeforces Round #360 (Div. 2) C. NP-Hard Problem 水题

    C. NP-Hard Problem 题目连接: http://www.codeforces.com/contest/688/problem/C Description Recently, Pari ...

  5. Codeforces Round #360 (Div. 2) B. Lovely Palindromes 水题

    B. Lovely Palindromes 题目连接: http://www.codeforces.com/contest/688/problem/B Description Pari has a f ...

  6. Codeforces Round #360 (Div. 2) A. Opponents 水题

    A. Opponents 题目连接: http://www.codeforces.com/contest/688/problem/A Description Arya has n opponents ...

  7. Codeforces Round #360 (Div. 1)A (二分图&dfs染色)

    题目链接:http://codeforces.com/problemset/problem/687/A 题意:给出一个n个点m条边的图,分别将每条边连接的两个点放到两个集合中,输出两个集合中的点,若不 ...

  8. Codeforces Round #360 (Div. 1) D. Dividing Kingdom II 并查集求奇偶元环

    D. Dividing Kingdom II   Long time ago, there was a great kingdom and it was being ruled by The Grea ...

  9. Codeforces Round #360 (Div. 2) E. The Values You Can Make DP

    E. The Values You Can Make     Pari wants to buy an expensive chocolate from Arya. She has n coins, ...

随机推荐

  1. cmd 命令收集

    window类   1.命令打开系统设置页面 1.control keymgr.dll 打开凭据管理器 2.gpedit.msc 打开管理面板 3.mspaint--------画图板  4.msts ...

  2. 配置Rip的认证

      实验拓扑图 PS:我做实验使用的是DynamipsDUI模拟器,并且加载的是真实的ios镜像(c3745-advipservicesk9-mz.124-3c.bin) 1. 配置路由器R1 2. ...

  3. Java longTime 和C#日期转换(结构+运算符重载)

    前几天,因为工作原因,连到了公司的一个java系统.查看数据的时候,突然整个人都不好了,数据库中日期字段时间为毛都是整型?之前从来没有接触过java,所心就趁机了解了一下.原来,在数据库中,保存的是j ...

  4. php面向对象的特性:OOP的封装

    字段的作用域: 1.public 公共的(类外可以访问) 2.private 私有的(只能类内访问) 3.protected 受保护的(类内和子类可以访问,类外无法访问) /*通过公共的方法来访问私有 ...

  5. Template_16_模板与继承

    1,名称模板参数template <typename PolicySetter1 = DefaultPolicy1,    typename PolicySetter2 = DefaultPol ...

  6. oracle连接和执行流程总结

    参考关于oracle连接及一个事务的完整流程分析的资料,做整理如下 参考资料: http://blog.csdn.net/wyzxg/archive/2010/08/16/5815335.aspx h ...

  7. IOS引导页拨动4张图片最后一张停三秒进入主页,页面推送

    // //  ViewController.m // // //  Created by 张艳锋 on 15/8/26. //  Copyright (c) 2015年 张艳锋. All rights ...

  8. MongoDB如何存储数据

    想要深入了解MongoDB如何存储数据之前,有一个概念必须清楚,那就是Memeory-Mapped Files. Memeory-Mapped Files 下图展示了数据库是如何跟底层系统打交道的. ...

  9. Vue.js 2.0版

    Vue.js 2.0版升级,更改了好多方法或指令 new Vue({ el:'#demo', data:{ msg:"vue2.0" } }) v-model lazy numbe ...

  10. php foreach 操作数组的代码

    php foreach 操作数组的代码.   foreach()有两种用法:  foreach(array_name as $value)  {  statement;  }  这里的array_na ...