Rectangles

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 19110    Accepted Submission(s): 6187

Problem Description
Given
two rectangles and the coordinates of two points on the diagonals of
each rectangle,you have to calculate the area of the intersected part
of two rectangles. its sides are parallel to OX and OY .
 
Input
Input
The first line of input is 8 positive numbers which indicate the
coordinates of four points that must be on each diagonal.The 8 numbers
are x1,y1,x2,y2,x3,y3,x4,y4.That means the two points on the first
rectangle are(x1,y1),(x2,y2);the other two points on the second
rectangle are (x3,y3),(x4,y4).
 
Output
Output For each case output the area of their intersected part in a single line.accurate up to 2 decimal places.
 
Sample Input
1.00 1.00 3.00 3.00 2.00 2.00 4.00 4.00
5.00 5.00 13.00 13.00 4.00 4.00 12.50 12.50
 
Sample Output
1.00
56.25
 
 
 
解析:调整坐标,找出重复部分的长和宽,从而求得面积。
aaarticlea/jpeg;base64,/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAFQAdkDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9U6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvKvir+1J8LPg3Z+I/+Ek8c+H7fWtDspL248OLq9quqS7YfOWKO3eVWMsi7dinG7evODmvVa+Cv+CkfiTxrqeq/DXwtd6LcaJ8JLnxzodlqmrwbL+91yWVpJfJt9PRZxNBCsLM0dzCxlm8kJC6oS4B9QfCr9qT4WfGSz8Of8I3458P3Gta5ZR3tv4cbV7VtUi3Q+c0UlukrMJY13b1GduxucDNavjP416H4G+LHw6+Ht/a6hNrXjr+0f7Nnt40a3h+xQLPN5zFwy5VgF2q2T12jmvnX4VfHrWbX9rvV/CGp/EPxRq3w6sPhzN4nupfiB4dg0Ga1uk1BInmJaws38hYcncQUyXyxK4Xiv2n/i/8IPiR+1j+zPJ/wtHw/N4b0/8A4Sb+1dV0Lxgtn9g32EXk+ZeWs6PB5jptHzrv+ZeQSCAff9FcV8Idd8Fa14Njj8BeK7fxjoVjNJbHUIfEL64yyk+Y0cl1JLK7MBIp2u5KqyAYXaK7WgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsnxZ4p0vwN4V1nxJrd19i0XR7KbUL658tpPJgiQySPtQFmwqk4UEnHAJrWryr9rH/k1j4yf9iZrP8A6QzUAeVf8PR/2Yv+im/+UDVP/kaj/h6P+zF/0U3/AMoGqf8AyNX5q/8ABN79inwP+2D/AMLE/wCEy1XxBpn/AAjv9nfZP7CuIIt/2j7Vv8zzYZM48hMYx1bOeMfav/DlT4If9DT8QP8AwY2P/wAh0Aeq/wDD0f8AZi/6Kb/5QNU/+RqP+Ho/7MX/AEU3/wAoGqf/ACNXlX/DlT4If9DT8QP/AAY2P/yHR/w5U+CH/Q0/ED/wY2P/AMh0Aeq/8PR/2Yv+im/+UDVP/kaj/h6P+zF/0U3/AMoGqf8AyNXlX/DlT4If9DT8QP8AwY2P/wAh0f8ADlT4If8AQ0/ED/wY2P8A8h0Aeq/8PR/2Yv8Aopv/AJQNU/8Akaj/AIej/sxf9FN/8oGqf/I1eVf8OVPgh/0NPxA/8GNj/wDIdH/DlT4If9DT8QP/AAY2P/yHQB6r/wAPR/2Yv+im/wDlA1T/AORqP+Ho/wCzF/0U3/ygap/8jV5V/wAOVPgh/wBDT8QP/BjY/wDyHR/w5U+CH/Q0/ED/AMGNj/8AIdAHqv8Aw9H/AGYv+im/+UDVP/kaj/h6P+zF/wBFN/8AKBqn/wAjV5V/w5U+CH/Q0/ED/wAGNj/8h0f8OVPgh/0NPxA/8GNj/wDIdAHqv/D0f9mL/opv/lA1T/5Go/4ej/sxf9FN/wDKBqn/AMjV5V/w5U+CH/Q0/ED/AMGNj/8AIdH/AA5U+CH/AENPxA/8GNj/APIdAHqv/D0f9mL/AKKb/wCUDVP/AJGo/wCHo/7MX/RTf/KBqn/yNXlX/DlT4If9DT8QP/BjY/8AyHR/w5U+CH/Q0/ED/wAGNj/8h0Aeq/8AD0f9mL/opv8A5QNU/wDkaj/h6P8Asxf9FN/8oGqf/I1eRah/wRk+A2k2FzfX3jLx1Z2VtG009zcapYJHFGoJZ2Y2eFUAEkngAV8IfFD9l7wLfaz4t/4VF/wlut6HoGkXepteaxcQM0kVtE8ktywWCMRRYACq3zH5ejOIxx4jF0sM4xqPWTsktWz6TKOHsfncK1XCRXJRi5TlJqMYpd29Lvotz9wfhD8aPBXx68Gx+KvAXiC38RaE80lsbiFHjaOVD80ckciq8bYKttdQSrIwyrKT2tflX/wQx/5rZ/3BP/b+vuz9sn4qa98Ff2avGvjHwxJBDrthDbx2s1xEJVhaa5igMgU8FlEpZd2V3AblYZU+3gMFVzHF0cFRtz1ZRgr7Xk0lfyuz5mclCLk+h7RRXzjq/wC0Bpf7Ofi3wh8HpPB/xO8aaxqEKx6RrDmDUm1lsbppGuprpTuQsxk3hFiXB2pFsNYf/CZfF65/aN/4RjTfFdjrVxbeIvtur6HYWsLaNovhZodsC3c7QLcrqkzZkjiSZ1JBYqsNe7T4cxVROpzRjT5HOMpO3NBO11bmtd6e9Zc3u35tDJ1orTrsfVVFVdUu5bDTbu6gsp9SngheSOytWjWW4YKSI0MjIgZiMDeyrkjLAZNfJln+24/7QXgvxFYfB3S77w9r8WkPqJ8V+LxZJo2hwCR0ea9eK4laGTbDMY43jJJVZGQw7nrz8uybGZpGVShFckXFSk2lGPNs5dbaPZNuzsm9Cp1Iw0e59e0V84/BZPF/xw8EePV13xL4jb4ea1NEPBniRymj+I5LcRDzLvNrHCqQtKokt90au6FvNRkdVPTfsbfFTXvjV+zV4K8Y+J5IJtdv4biO6mt4hEszQ3MsAkKjgMwiDNtwu4naqjCjbG5JVwVGrVlUjL2U4QklfRzjKUd0tVyTjNNJxkra30Uaik0rb/oe0UUUV86bBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXlX7WP/ACax8ZP+xM1n/wBIZq9Vryr9rH/k1j4yf9iZrP8A6QzUAfAH/BDH/mtn/cE/9v6/VSvyr/4IY/8ANbP+4J/7f1+qlABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVfUNQtdJsLm+vrmGzsraNpp7m4kCRxRqCWdmPCqACSTwAKNQ1C10mwub6+uYbOyto2mnubiQJHFGoJZ2Y8KoAJJPAAr88/jX8a/Ff7ZnxBh+GXwyhmXwmsm+WeTdEt4qMM3VycZjt0OCqEZJ2kqZDGiebjcbDBwWl5vRJbtn2nDHDGI4jxEveVPD01zVKkvhhH9W+i+bsk2Hxr+Nfiv8AbM+IMPwy+GUMy+E1k3yzybolvFRhm6uTjMduhwVQjJO0lTIY0T3Txv8AAXw98AP2JvjFo2jL9qv5/Bmryalq0qBZr2UWE3J67UXJCRgkKCeSzMzeq/AX4C+HvgB4NXRtGX7Vfz7ZNS1aVAs17KAeT12ouSEjBIUE8lmZmq/tY/8AJrHxk/7EzWf/AEhmrnwWCnCbxWKd6r+6K7L+v+D6/E/E+HxOHjkeRxdPA03/ANvVZfzz733Se2jaVko/AH/BDH/mtn/cE/8Ab+v038ceB9B+JPhLVPDHifS4NZ0LU4TBdWVwDtdcgggjBVlIDKykMrKGUggEfmR/wQx/5rZ/3BP/AG/r9VK96nUnRnGpTk1JO6a0aa2afRo/M2k1Znglx+xN8NNe1LRNa8V/8JH408WaPDBBa+J9Y8RXiagiwtmEhreSJEZDzuRFZmzIxaRnduv0P9nTwR4Z8S6hrujwa5pN7qGrya7eRWPibU4bS5vZHDySyWy3AhfcQAVKFSAFI28V6ZRXsVc8zWtHkqYqbja1uaXKlvZK9kvJJLyM1SgtVFHnvw3+HniXwJ4S8RW9942n8T+J9Y1G91VdS1OCV7KxlmP7qC3tTOXS1iATEPn5Pz4ddw28N4M/Y98IWHgPx/4f8YxweL5/H2uTa94iuYYH05biVrgTxQxeXIZkhiYAqjTOdzSHOHK173RUxzrHwdSVOryucoybilF3i7xs4pNcr1SVkmk7XSH7ODtdbHnsvwWsLbwl4g0PR/E/jHQ31mFYJdVXxJd397bKCcm2e+ecQMQzKWRQ3IIIZUZel8D+B9B+G3hLS/DHhjS4NG0LTIRBa2VuDtRckkknJZmJLMzEszMWYkkk7tFcVXG4mvB06tRyTfM7u93ayb6uy0V9k3a13elGKd0goooriKCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvKv2sf+TWPjJ/2Jms/wDpDNXqteVftY/8msfGT/sTNZ/9IZqAPgD/AIIY/wDNbP8AuCf+39fqpX5V/wDBDH/mtn/cE/8Ab+v1UoAKKK434wfEuy+D/wANde8X30QuItMtzIlsZfL+0SkhY4g2Djc5UZwcZzg4rehQqYmrChRV5SaSXdt2S+8uEJVJKEVdvQ7KivEf2YP2m7X9o/StelbQ/wDhGtV0e5WGbTXvPtDeWy/LIT5aEZZZFxjjb15wPbq6cfgMTlmJnhMXDlqR3Wj3V91dPR9GXWo1MPUdKqrSQUUUV55iFFFFABRRRQAVX1DULXSbC5vr65hs7K2jaae5uJAkcUaglnZjwqgAkk8ACjUNQtdJsLm+vrmGzsraNpp7m4kCRxRqCWdmPCqACSTwAK/PP41/GvxX+2Z8QYfhl8MoZl8JrJvlnk3RLeKjDN1cnGY7dDgqhGSdpKmQxonm43GwwcFpeb0SW7Z9pwxwxiOI8RL3lTw9Nc1SpL4YR/Vvovm7JNh8a/jX4r/bM+IMPwy+GUMy+E1k3yzybolvFRhm6uTjMduhwVQjJO0lTIY0T7J+AvwF8PfADwaujaMv2q/n2yalq0qBZr2UA8nrtRckJGCQoJ5LMzMfAX4C+HvgB4NXRtGX7Vfz7ZNS1aVAs17KAeT12ouSEjBIUE8lmZm9LrnwWCnCbxWKd6r+6K7L+v8Ag+vxPxPh8Th45HkcXTwNN/8Ab1WX88+990nto2lZKJXlX7WP/JrHxk/7EzWf/SGavVa8q/ax/wCTWPjJ/wBiZrP/AKQzV7R+aHwB/wAEMf8Amtn/AHBP/b+v1Ur8q/8Aghj/AM1s/wC4J/7f1+qlABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5V+1j/yax8ZP+xM1n/0hmr1WvKv2sf8Ak1j4yf8AYmaz/wCkM1AHwB/wQx/5rZ/3BP8A2/r9VK/Kv/ghj/zWz/uCf+39fqpQAV8Wft7eMbHxV4x+Hvwjn1mDRLHUb2PUtavrm6W2igttzIm53+ToJmAJ+8iccivtOvi3w7+yhrfxj/aL8d+MfjJ4Z2+GZw0Wj2J1EZkUOEhbNvOWTbEnzA4BaQnHBFfd8IVMFg8ZUzLHVOVUYtxStzOb92PLFtczV3Lysr6HsZZKlSqyr1pWUFdbXb2Vl1tuc/bfEPwr8Lf27LDUvDHiHTdX8J+NrKHT7r+yb+O5htrg4ijUiItg74ojlugmc5xmvvKvi79oz9gnQF8C2958HvDLWHi20vYpREuqSkzxchgrXE21GUlXByD8pHcV9YfD261688C6DN4osRp3iRrKL+0bZXR1S4CgSbSjMCCwJGGPBHNdPE9XLsfhMJjcDVcpRj7KSnyqfufDJxTejTtzXtouppmEqFanSq0ZXaXK72vps7XfTS/kdDRRRX52eGFFFFABVfUNQtdJsLm+vrmGzsraNpp7m4kCRxRqCWdmPCqACSTwAKNQ1C10mwub6+uYbOyto2mnubiQJHFGoJZ2Y8KoAJJPAAr88/jX8a/Ff7ZnxBh+GXwyhmXwmsm+WeTdEt4qMM3VycZjt0OCqEZJ2kqZDGiebjcbDBwWl5vRJbtn2nDHDGI4jxEveVPD01zVKkvhhH9W+i+bsk2Hxr+Nfiv9sz4gw/DL4ZQzL4TWTfLPJuiW8VGGbq5OMx26HBVCMk7SVMhjRPsn4C/AXw98APBq6Noy/ar+fbJqWrSoFmvZQDyeu1FyQkYJCgnkszMx8BfgL4e+AHg1dG0ZftV/Ptk1LVpUCzXsoB5PXai5ISMEhQTyWZmb0uufBYKcJvFYp3qv7orsv6/4Pr8T8T4fE4eOR5HF08DTf/b1WX88+990nto2lZKJRRRXtH5oFeVftY/8msfGT/sTNZ/9IZq9Vryr9rH/AJNY+Mn/AGJms/8ApDNQB8Af8EMf+a2f9wT/ANv6/VSvyr/4IY/81s/7gn/t/X6qUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXlX7WP8Ayax8ZP8AsTNZ/wDSGavVa8q/ax/5NY+Mn/Ymaz/6QzUAfAH/AAQx/wCa2f8AcE/9v6/VSvyr/wCCGP8AzWz/ALgn/t/X6qUAFFFFABRRRQAUUUUAFV9Q1C10mwub6+uYbOyto2mnubiQJHFGoJZ2Y8KoAJJPAAo1DULXSbC5vr65hs7K2jaae5uJAkcUaglnZjwqgAkk8ACvzz+Nfxr8V/tmfEGH4ZfDKGZfCayb5Z5N0S3iowzdXJxmO3Q4KoRknaSpkMaJ5uNxsMHBaXm9Elu2facMcMYjiPES95U8PTXNUqS+GEf1b6L5uyTYfGv41+K/2zPiDD8MvhlDMvhNZN8s8m6JbxUYZurk4zHbocFUIyTtJUyGNE+yfgL8BfD3wA8Gro2jL9qv59smpatKgWa9lAPJ67UXJCRgkKCeSzMzHwF+Avh74AeDV0bRl+1X8+2TUtWlQLNeygHk9dqLkhIwSFBPJZmZvS658Fgpwm8Vineq/uiuy/r/AIPr8T8T4fE4eOR5HF08DTf/AG9Vl/PPvfdJ7aNpWSiUUUV7R+aBRRRQAV5V+1j/AMmsfGT/ALEzWf8A0hmr1WvKv2sf+TWPjJ/2Jms/+kM1AHwB/wAEMf8Amtn/AHBP/b+v1Ur8q/8Aghj/AM1s/wC4J/7f1+qlABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5V+1j/yax8ZP+xM1n/0hmr1WvKv2sf8Ak1j4yf8AYmaz/wCkM1AHwB/wQx/5rZ/3BP8A2/r9VK/Kv/ghj/zWz/uCf+39fqpQAUUUUAFFFFABVfUNQtdJsLm+vrmGzsraNpp7m4kCRxRqCWdmPCqACSTwAKNQ1C10mwub6+uYbOyto2mnubiQJHFGoJZ2Y8KoAJJPAAr88/jX8a/Ff7ZnxBh+GXwyhmXwmsm+WeTdEt4qMM3VycZjt0OCqEZJ2kqZDGiebjcbDBwWl5vRJbtn2nDHDGI4jxEveVPD01zVKkvhhH9W+i+bsk2Hxr+Nfiv9sz4gw/DL4ZQzL4TWTfLPJuiW8VGGbq5OMx26HBVCMk7SVMhjRPsn4C/AXw98APBq6Noy/ar+fbJqWrSoFmvZQDyeu1FyQkYJCgnkszMx8BfgL4e+AHg1dG0ZftV/Ptk1LVpUCzXsoB5PXai5ISMEhQTyWZmb0uufBYKcJvFYp3qv7orsv6/4Pr8T8T4fE4eOR5HF08DTf/b1WX88+990nto2lZKJRRRXtH5oFFFFABRRRQAV5V+1j/yax8ZP+xM1n/0hmr1WvKv2sf8Ak1j4yf8AYmaz/wCkM1AHwB/wQx/5rZ/3BP8A2/r9VK/Kv/ghj/zWz/uCf+39fqpQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeVftY/wDJrHxk/wCxM1n/ANIZq9Vryr9rH/k1j4yf9iZrP/pDNQB8Af8ABDH/AJrZ/wBwT/2/r9VK/Kv/AIIY/wDNbP8AuCf+39fqpQAUUUUAFV9Q1C10mwub6+uYbOyto2mnubiQJHFGoJZ2Y8KoAJJPAAo1DULXSbC5vr65hs7K2jaae5uJAkcUaglnZjwqgAkk8ACvzz+Nfxr8V/tmfEGH4ZfDKGZfCayb5Z5N0S3iowzdXJxmO3Q4KoRknaSpkMaJ5uNxsMHBaXm9Elu2facMcMYjiPES95U8PTXNUqS+GEf1b6L5uyTYfGv41+K/2zPiDD8MvhlDMvhNZN8s8m6JbxUYZurk4zHbocFUIyTtJUyGNE+yfgL8BfD3wA8Gro2jL9qv59smpatKgWa9lAPJ67UXJCRgkKCeSzMzHwF+Avh74AeDV0bRl+1X8+2TUtWlQLNeygHk9dqLkhIwSFBPJZmZvS658Fgpwm8Vineq/uiuy/r/AIPr8T8T4fE4eOR5HF08DTf/AG9Vl/PPvfdJ7aNpWSiUUUV7R+aBRRRQAUUUUAFFFFABXlX7WP8Ayax8ZP8AsTNZ/wDSGavVa8q/ax/5NY+Mn/Ymaz/6QzUAfAH/AAQx/wCa2f8AcE/9v6/VSvyr/wCCGP8AzWz/ALgn/t/X6qUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAY/i7xdo3gLw1qHiDxBqEOlaPYRGa5u5ydqLnAAAyWYkhQoBLEgAEkCjwj4gk8V+GtP1eXR9S0BryITDTtXjSO7hUn5RIiO4RiMHaTkZwwVgQOB/an+HWs/Fj4B+LPC/h9IZdYvIoJLaKeQRrK0VxHMUDHgMwjKjOBkjJUZI8R+JGlfEr4l/Frwl4t8J+G/iZY+BJYoZNc0weKV0SSdhwyR2ck6vCyY2vgoJSpKFMieT67LMowuYYRSlWjTnzTu5OKSUYxcVrKOtRuSWu8Oi5menh8NTrU7uai7vdrolbdrfX7vU+ndW+JvhjQ/Heh+DL3V4YvFGtRSz2OmKrPJJHGrMzttBCLhHwXKhijBclSB09fKXir9nTxXoX7W/hX4oaEf8AhIbS81O4l1e5lgiWbT7ZrWK2SIg3ESyoq+bsaOPzEGS/2ghVPt3hP4o+HPip4L8S6tDJeab4Zsrm906XWLicWkNxFCCst3bXMcn+o+/tmVlIKMflK1hj8sw1Kjh6+BqOpGUIuo/5ZuUly20a0Xu31lrLRNWith4RhCdGXMmlfybb0t8tO++x39cBp/xt8OeJ/BfiHxN4PF545tNDuZbO4t9AhEk00sYRpFgEhRZsK4YFGIccIWJAPzF8Afg/4v8Ai74U+Io134meI73Rv9O8L6HrCapc3NtqiiSVJtQe3mkkhmRkdYU8t9oCyY2yqsw7/wDZs8GeI/2Z/BfxPtvEHhy8k0S21ybUdGtdAsjdzX8TgRqII0uZpfmEUWI5QpjBy8rguY/XxGRYDBKvTeJVWvTlBKC91STautdW9UrKzjaV0rI6Z4OjSU48/NOLVlte+/8AW61ufQvhHxdo3j3w1p/iDw/qEOq6PfxCa2u4CdrrnBBBwVYEFSpAKkEEAgitivKf2WPh1rPwn+AfhPwv4gSGLWLOKeS5igkEixNLcSTBCw4LKJApxkZBwWGCfVq+QzCjRw+MrUcNPnpxlJRl3im0nppqtTzK8YQqyjTd4puz7q+gUUUVwGIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXlX7WP/JrHxk/7EzWf/SGavVa8q/ax/wCTWPjJ/wBiZrP/AKQzUAfAH/BDH/mtn/cE/wDb+v1Ur8q/+CGP/NbP+4J/7f1+qlABVfUNQtdJsLm+vrmGzsraNpp7m4kCRxRqCWdmPCqACSTwAKNQ1C10mwub6+uYbOyto2mnubiQJHFGoJZ2Y8KoAJJPAAr88/jX8a/Ff7ZnxBh+GXwyhmXwmsm+WeTdEt4qMM3VycZjt0OCqEZJ2kqZDGiebjcbDBwWl5vRJbtn2nDHDGI4jxEveVPD01zVKkvhhH9W+i+bsk2Hxr+Nfiv9sz4gw/DL4ZQzL4TWTfLPJuiW8VGGbq5OMx26HBVCMk7SVMhjRPsn4C/AXw98APBq6Noy/ar+fbJqWrSoFmvZQDyeu1FyQkYJCgnkszMx8BfgL4e+AHg1dG0ZftV/Ptk1LVpUCzXsoB5PXai5ISMEhQTyWZmb0uufBYKcJvFYp3qv7orsv6/4Pr8T8T4fE4eOR5HF08DTf/b1WX88+990nto2lZKJRRRXtH5oFFFFABRRRQAUUV8h/wDBQD48eOvgl/wgf/CF65/Yv9p/b/tf+iQT+Z5f2fZ/rUbGPMfpjOec4Fe3k2U188x9PL8M0pzvZyulpFyd7JvZdtzrwuGnjK0aFNpN9/JXPryivy+0/wCP/wC13q9hbX1jb+Kb2yuolngubfwfFJHLGwBV0YWpDKQQQRwQan/4Xf8Atjf9A7xf/wCEXH/8iV98/DfHxdnjMPf/AK+S/wDkD2f7CrLT2sPvf+R+nVeVftY/8msfGT/sTNZ/9IZq+Gv+F3/tjf8AQO8X/wDhFx//ACJXP/EL4uftSa14A8S6f4vsfE8fhO70y5t9Ye78KR20K2TRMs5eUWymNfLL5fcNoycjGaX/ABDnHf8AQbh//Bj/APkA/sKt/wA/Yf8AgT/yJv8Aghj/AM1s/wC4J/7f1+qlfiN+yl4k+IHw7/4Sn/hQ0N/d/bPsv9tf2Fpw1fbs877P5m5JfL+9PjG3dhuu3j3/AP4Xf+2N/wBA7xf/AOEXH/8AIlH/ABDnHf8AQbh//Bj/APkA/sKt/wA/Yf8AgT/yP06or8xf+F3/ALY3/QO8X/8AhFx//IlH/C7/ANsb/oHeL/8Awi4//kSj/iHOO/6DcP8A+DH/APIB/YVb/n7D/wACf+R+nVFfmL/wu/8AbG/6B3i//wAIuP8A+RKP+F3/ALY3/QO8X/8AhFx//IlH/EOcd/0G4f8A8GP/AOQD+wq3/P2H/gT/AMj9OqK/MX/hd/7Y3/QO8X/+EXH/APIlH/C7/wBsb/oHeL//AAi4/wD5Eo/4hzjv+g3D/wDgx/8AyAf2FW/5+w/8Cf8Akfp1RX5i/wDC7/2xv+gd4v8A/CLj/wDkSj/hd/7Y3/QO8X/+EXH/APIlH/EOcd/0G4f/AMGP/wCQD+wq3/P2H/gT/wAj9OqK/MX/AIXf+2N/0DvF/wD4Rcf/AMiUf8Lv/bG/6B3i/wD8IuP/AORKP+Ic47/oNw//AIMf/wAgH9hVv+fsP/An/kfp1RX5i/8AC7/2xv8AoHeL/wDwi4//AJEo/wCF3/tjf9A7xf8A+EXH/wDIlH/EOcd/0G4f/wAGP/5AP7Crf8/Yf+BP/I/TqivzF/4Xf+2N/wBA7xf/AOEXH/8AIlcZB+3N8cwpaXxxxjgf2TYjH1/cV8xxDw1LhrBvGYvF0ZapKEJuU5NvaMeVXtu9Ukuux7+TcD5nntd0MHODtq22+WK/vNRdr207n620VyPwg1698U/CXwTrWpXH2vUdR0OxvLmfYqeZLJAju21QAMsScAADPAFddXyEouEnGSs130/B6r5nwNWm6NSVNtNxbWmq07eQUUUVJkFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXlX7WP8Ayax8ZP8AsTNZ/wDSGavVa8q/ax/5NY+Mn/Ymaz/6QzUAfAH/AAQx/wCa2f8AcE/9v6/UzUNQtdJsLm+vrmGzsraNpp7m4kCRxRqCWdmPCqACSTwAK/Kv/giBqFrpNh8db6+uYbOyto9GmnubiQJHFGo1As7MeFUAEkngAV6R8a/jX4r/AGzPiDD8MvhlDMvhNZN8s8m6JbxUYZurk4zHbocFUIyTtJUyGNE83G42GDgtLzeiS3bPtOGOGMRxHiJe8qeHprmqVJfDCP6t9F83ZJsPjX8a/Ff7ZnxBh+GXwyhmXwmsm+WeTdEt4qMM3VycZjt0OCqEZJ2kqZDGifZPwF+Avh74AeDV0bRl+1X8+2TUtWlQLNeygHk9dqLkhIwSFBPJZmZj4C/AXw98APBq6Noy/ar+fbJqWrSoFmvZQDyeu1FyQkYJCgnkszM3pdc+CwU4TeKxTvVf3RXZf1/wfX4n4nw+Jw8cjyOLp4Gm/wDt6rL+efe+6T20bSslEooor2j80CiiigAooooAKKKKACvgT/gqr/zS/wD7in/tpX33XwJ/wVV/5pf/ANxT/wBtK/R/Dv8A5KfCf9v/APpuZ7uR/wDIwp/P/wBJZ9efs+/8kE+Gv/Ys6b/6Sx139cB+z7/yQT4a/wDYs6b/AOksdd/XxWZf79X/AMcvzZ5Nf+NP1f5hXlX7WP8Ayax8ZP8AsTNZ/wDSGavVa8q/ax/5NY+Mn/Ymaz/6QzV5pgfAH/BDH/mtn/cE/wDb+v1Ur8q/+CGP/NbP+4J/7f1+qlABRRRQAUUUUAFFFFABRRRQAUUUUAFcl8Uvil4e+Dvg288S+Jbz7LYQfJHGgDTXMpBKwxLkbnbBwMgAAsxCqxHkv7S/7Yvh74EfadCsIv7d8bNbeZFZJg29mzY2G6YMCMqS4jXLMFGSgdXr5b+G/wCzn8UP2u/FNv42+IupXdhoTeRG9/fQ+RcXVts3qLKEIECEFf3mAmZWcCRg4rwsXmTjP6thY89T8F6v9PyP1XIOCo18Ks6z+r9Wwa1Tfx1PKEd9V9rXo0pK7R4/+LfxQ/bb8ZXPhHwTYXdj4Ga5hQ2pj2wxKC7JPfzqDtztZ/LyVzGoRZHUM3EftY/s42X7Ovgv4b2pu/7R8R6t9vl1a8jZvJLILbZFEpx8ib3wxAZixJwNqJ+nnw9+G3hr4U+HE0HwppMOj6WsjzGGNmdnkY/M7u5LO3AGWJICqBwoA+Kv+Cqv/NL/APuKf+2lfovhplMHxThK+NtUqXk9dUmoSasn2aun0eqsexU40+uVqeTZJS+rYJX91fHP3Wr1Gt29Lq783KyPrz9n3/kgnw1/7FnTf/SWOu/rgP2ff+SCfDX/ALFnTf8A0ljrv68nMv8Afq/+OX5s/Ga/8afq/wAwooorzTAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPFP2ofj9q/wC+HHirxDY+C9Q1WPTdFmvYddlutOi0u3usOsMU6zXsNw+ZPKBWFGZ/MVULOdoyvhv8c/i14ns/ht/bHwE8QafHq9lA3ibV7jUtNsk0yZ4UPmQ2TXclw8XmM+5JfLmjRfuSPlKyv2svA3jP4m+KvAOhf8ACHah4q+E9lerruvWWgXdl9s1S6tnU22n3UF9cW8BsWLea/M7O0Krsh2rI3mv7IfwTvfg14y8Y6hrf7OFxpupav451HVNA8QW0fh520LSLoRxxQl0vfNiWNPN3RQK4CswQNuIIB3/AMdP2pPiL+zxpXhbU/F/w+8Dwabr/iC18Ox3kXj25WGzlnWRhPcPJpKCOBFicu+SQOdp5x6r8ENf+IvibStT1Px1H4HfTb6Zbzw7eeB9Uub6GbT5F3RiV5oUDsF2kTRnbIHyI49o38V+158LfE/xQ/4Ur/wjGmf2n/wjvxN0TxDqn+kRRfZ7C387zpv3jLu271+Vcsc8A16r8N/hb4Y+EWhXGieENM/sXRZr2e/XToriV7e3kmbfIsEbsVgiLEsIYgsalmIUFjkA6uiiigArzT9pvSb7X/2bfivpmmWVxqOpXvhLVra1s7SJpZp5Xs5VSNEUEszMQAoBJJAFeVeFf2oYrXUviv4/8fa/P4c+H3hTxRP4HtNIstKkvIo5rdkLahczxQvMGlaRUVfkijG1T5jurVZ+Nv7Xiab+yxrPxf8AhKtj4lsrG7ht1udds720gdGuI4ZHijeONp8PIE4ZFB3neWiMbfWLhfNHiKeHjSb55QgpWfIpzSag5tKPMrq6Tflcw9vCzd9tfOx+FXw8+Nnij4Y+HPEWgaLcxppHiCS1l1K1kVttw1sZTCGKkEqpmc7ScEhSRlVI+gPgp/wU0+InwE8OTaT4Y8G+BWa5k8271C9sLx7q6YE7A7rdKNqAkKoAAyTjczE/vZXkPxI/ay+F/wAIvEuo6D4t12+0nU9PtI9QuU/sLUJo47aR1jSfzY4GjMZkdY94YjzDsJ3ZFfMYTKauYYm+DoSqVbfZi5O22yvprb5+Z7ss6xsMv/sx1msPe/Lsm+77/O+y7K35af8AD6v43/8AQrfD/wD8F19/8mUf8Pq/jf8A9Ct8P/8AwXX3/wAmV+nGgfHPxBrX7VzfDp9MsbbwlP4Gj8V2NzJFcR6lI7XSQ4njlVPIxukBhKFhtUlgWMaHhT4keI9F/au8SfCvV9R/4SHSL3w6PGWlXs0EcE+mRm6+yvYHy1CzxhhvSRgJFBKuZeGHtyyPFwUuayapqra+ri36Wut2m09Gt9DxPax/Gx+Y/wDw+r+N/wD0K3w//wDBdff/ACZR/wAPq/jf/wBCt8P/APwXX3/yZX7U0V8+an4rf8Pq/jf/ANCt8P8A/wAF19/8mUf8Pq/jf/0K3w//APBdff8AyZX7U0UAfit/w+r+N/8A0K3w/wD/AAXX3/yZR/w+r+N//QrfD/8A8F19/wDJlftTRQB+K3/D6v43/wDQrfD/AP8ABdff/JlH/D6v43/9Ct8P/wDwXX3/AMmV+1NFAH4rf8Pq/jf/ANCt8P8A/wAF19/8mVzHjT9tbxx+2D9j/wCEy0rw/pn/AAju/wCyf2Fbzxb/ALRt3+Z5s0mceQmMY6tnPGP3Qr4E/wCCqv8AzS//ALin/tpX6P4d/wDJT4T/ALf/APTcz3cj/wCRhT+f/pLPkfS/+Cu3xh+GumWnhDTPDfgefTdAhTSrWW7sLxpnigURIzlbtQWKoCSABnOAOlWv+H1fxv8A+hW+H/8A4Lr7/wCTK/Wr9n3/AJIJ8Nf+xZ03/wBJY67+visy/wB+r/45fmzya/8AGn6v8z8Vv+H1fxv/AOhW+H//AILr7/5Mrn/iF/wV2+MPxK8AeJfCGp+G/A8Gm6/plzpV1LaWF4syRTxNE7IWu2AYK5IJBGcZB6V+5NFeaYH5V/8ABDH/AJrZ/wBwT/2/r9VKKKACiiigAooooAKKKKACiivPPjX8d/CnwE8OQ6t4nuJma5k8q00+yVXurpgRvKIzKNqAgsxIAyBncyg51KkKUHOo7JHZg8HiMwxEMLhIOdSTskldv+uvZas7vUNQtdJsLm+vrmGzsraNpp7m4kCRxRqCWdmPCqACSTwAK+Cfjt+2/wCIfiZqsPg74K22rL53nxzaha2Ze+vgFcEW0YDPGmwGTzMLKOOI9h3cHqeofGT9vXxS9tZ2/wDZ3g+2uZZ7aOYNHpdgyooCyTqhM021l6hmHmsVVELY+4PgL+zR4Q+AOlL/AGRbfbfEM1ssF/rtxnzrnDFiFUkiJCxHyJ1CJuLlQ1fNuvic1fJhrwpdZdX6f1/kftUMqyXgGCxGdcuKxzV40VZwpvXWo9m12tvsmvfXhH7Nn7AFj4bxrvxRtrTWdSPlSWmhxSs9vakbXJnIwJXDAoY/miwGyZNw2/aNFFe3hcHRwcPZ0Vb836n5dn3EWZcS4p4vManM+i2jFdorptr1e7bYV8Cf8FVf+aX/APcU/wDbSvvuvgT/AIKq/wDNL/8AuKf+2lfqnh3/AMlPhP8At/8A9NzOfI/+RhT+f/pLPrz9n3/kgnw1/wCxZ03/ANJY67+uA/Z9/wCSCfDX/sWdN/8ASWOu/r4rMv8Afq/+OX5s8mv/ABp+r/MKKKK80wCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD578Q/shQax/wsPRNP8c654Z8B+OrttW1jRNHSJLs6hJxdNHeSK7Lb3ChPMgKHlMK6Rs8TWdR/Y/0TV/2eU+DV9448Y3vhNJois9xc2cl6tvEyvFaCU2pHko6Iy/LvG0IHEYCV73RX0n+sWaWgvbfBKM1pG/NFJRle13JJL3nd92Y+xhroee3Xh74gn4j+C2tPE8EfgXSNOnGtC6iil1DXrtkWOEOqwIluqEGYyRON7MU8pVANee/E79myf4v/tMfDzx3rem6HZ+H/A/nXEFxb3MsmparP+6e1SZRFGIY7ecSyr+9lDZwUAkfH0JRXPhs4xODqKth0oSUJQulZ2nzcz0teTUmk3eyso25Y2cqakrP1PM/+FFWP/C/v+Ftf8JHrn9t/wBkf2F/ZebX7B9i3eZ5WPI83/Xfvd3mbt3GdnyUeFPgz/Znxk8SfE3XtY/tzxJf2g0XTFhtfssGl6SsnmrahA7GaRpcyPM5yTgIsSgqfTKKweaYyUXBz0cFT2V+RO/Le1/Xq1o7rQfJHt5hRRRXlGgUUUUAFFFFABRRRQAV8Cf8FVf+aX/9xT/20r77r4E/4Kq/80v/AO4p/wC2lfo/h3/yU+E/7f8A/Tcz3cj/AORhT+f/AKSz68/Z9/5IJ8Nf+xZ03/0ljrv64D9n3/kgnw1/7FnTf/SWOu/r4rMv9+r/AOOX5s8mv/Gn6v8AMKKKK80wCiiigAooooAKKKKACisjxZ4s0fwL4c1DX9f1CHS9IsIzLcXU5O1FzgAAcsxJACgEsSAASQK/Pr4xftTePf2oNdk8D/CjSdWtvD13bCC6tYoEN5eK7IrtO6lhBCGZUOHClWbzGIfavm43H0sEkpaye0Vuz7bhrhLH8TVJSo2p0IfHVlpCK669Xbp6XaWp7T+1H+3Fpfw0/tjwj4Kb+0vGcOIJdR2q9npzncHHJPmTJgDZjYrN8xJRoz5L8F/2OvGvxv8AGR8f/GGW7tLC7uZJ7qwvt8OpXzIVVVZNo8iE4KjG1gsYCKqsjj2n9mj9h3Q/hL9m1/xgtp4j8ZwXPn2rws7WdhtyEMasF8x+Q+91+VguwApvb6krzKeBrY6ar4/bpBbL17v+vI+2xnFWW8LYeWV8JK82rVMQ170u6p9Yxurrz1SvabyPCfhPR/AvhzT9A0DT4dL0iwjEVvawA7UXOSSTyzEkksSSxJJJJJrXoor6RJRSSVkj8XqVJ1pyqVJNybu29W29231bCiiimZhXwJ/wVV/5pf8A9xT/ANtK++6+BP8Agqr/AM0v/wC4p/7aV+j+Hf8AyU+E/wC3/wD03M93I/8AkYU/n/6Sz68/Z9/5IJ8Nf+xZ03/0ljrv64D9n3/kgnw1/wCxZ03/ANJY67+visy/36v/AI5fmzya/wDGn6v8wooorzTAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr4E/4Kq/80v8A+4p/7aV9918Cf8FVf+aX/wDcU/8AbSv0fw7/AOSnwn/b/wD6bme7kf8AyMKfz/8ASWfXn7Pv/JBPhr/2LOm/+ksdd/XAfs+/8kE+Gv8A2LOm/wDpLHXf18VmX+/V/wDHL82eTX/jT9X+YUUUV5pgFFFFABRRRQAV49+0H+1B4U/Z6sLdNUE2q6/eRvJZ6PZMokZQG2ySsT+6iLjZuwxJztVtjY8H/aH/AG75Gv8A/hDvg952o6+96tq2uRWyXMcjZUCOzjO7zmdyU3FcYB2B96uuF+zx+whf+Kb/AP4TH4w+dcRahG10uhy3Mq3s00hYmS8kGGRuQ+0MXLON5UqyN87XzGpXm8PgFzS6y+yv8/63P2PK+DcJlWFjnHF1R0qL1jRX8Wp8rrlXrr3cFZvzvQvh98ZP26vE0Gua/d/2d4btdxt9Qu7ZobGCJ5yHjs41H75xtYEliT5KrJKDsr7++EPwR8IfA7QpNM8KaZ9k+0eW13eTOZbi7dF2hpHP4naoVAXYqq7jXaafp9rpNhbWNjbQ2dlbRrDBbW8YSOKNQAqKo4VQAAAOABViuvB5dTwr9rN81R7ye/y7HgcS8Z4vPoLA4eCoYSHw0oaRte/vWtzO+u1k9Ur3bKKKK9c/OwooooAKKKKACvgT/gqr/wA0v/7in/tpX33XwJ/wVV/5pf8A9xT/ANtK/R/Dv/kp8J/2/wD+m5nu5H/yMKfz/wDSWfXn7Pv/ACQT4a/9izpv/pLHXf1wH7Pv/JBPhr/2LOm/+ksdd/XxWZf79X/xy/Nnk1/40/V/mFFFFeaYBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfAn/AAVV/wCaX/8AcU/9tK++6+BP+Cqv/NL/APuKf+2lfo/h3/yU+E/7f/8ATcz3cj/5GFP5/wDpLPrz9n3/AJIJ8Nf+xZ03/wBJY67+uA/Z9/5IJ8Nf+xZ03/0ljrv6+KzL/fq/+OX5s8mv/Gn6v8wooorzTAKKK+eP2l/2xfD3wI+06FYRf2742a28yKyTBt7NmxsN0wYEZUlxGuWYKMlA6vXPXxFLDU3UquyR7GU5Rjs8xccFl9NzqS6Lou7eyS6t6HrXxS+KXh74O+DbzxL4lvPsthB8kcaANNcykErDEuRudsHAyAACzEKrEfAPj/4t/FD9tvxlc+EfBNhd2PgZrmFDamPbDEoLsk9/OoO3O1n8vJXMahFkdQzHw3/Zz+KH7Xfim38bfEXUruw0JvIje/vofIuLq22b1FlCECBCCv7zATMrOBIwcV+gvw9+G3hr4U+HE0HwppMOj6WsjzGGNmdnkY/M7u5LO3AGWJICqBwoA+etic33vTo/+TS/yX9a9P2ByyTw6VqbjjMy770qL026ymns9H35NpeTfs1/sh+GvgVYWGrX0UOteOxG4n1cljHblwA0duh4VQAV8wrvYM/Kq+we/wBFFfQ0KFPDQVOlGyR+PZrm2NzrFSxuPqOdSXV9FvZLZJX0S0QUUV85fFr9uzwF8GviDqvg/WtI8R3Wp6b5XnS2FtbvC3mRJKu0vOpPyyAHKjnP1r3MuyvG5tVdDA0nUkldpdrpX+9o4KGHq4mXJRjd7n0bRXjvwP8A2rvAHx+uprHw7dXdnrEMZmfS9UhEU/lhsFl2syMOh+ViQCMgV7FWONwOJy6s8Pi6bhNdGrP/AIbzJq0alCfJVjZ+YUUUVwmIUUUUAFfAn/BVX/ml/wD3FP8A20r77r4E/wCCqv8AzS//ALin/tpX6P4d/wDJT4T/ALf/APTcz3cj/wCRhT+f/pLPrz9n3/kgnw1/7FnTf/SWOu/rgP2ff+SCfDX/ALFnTf8A0ljrv6+KzL/fq/8Ajl+bPJr/AMafq/zCiiivNMAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvgT/gqr/zS/wD7in/tpX33XwJ/wVV/5pf/ANxT/wBtK/R/Dv8A5KfCf9v/APpuZ7uR/wDIwp/P/wBJZ9efs+/8kE+Gv/Ys6b/6Sx139cB+z7/yQT4a/wDYs6b/AOksdd/XxWZf79X/AMcvzZ5Nf+NP1f5hVfUNQtdJsLm+vrmGzsraNpp7m4kCRxRqCWdmPCqACSTwAK4T41/Hfwp8BPDkOreJ7iZmuZPKtNPslV7q6YEbyiMyjagILMSAMgZ3MoPwRqeofGT9vXxS9tZ2/wDZ3g+2uZZ7aOYNHpdgyooCyTqhM021l6hmHmsVVELY+WxmYww0lSprnqPaK/XsffcN8GYnO6UswxdRYfBw+KrPZ26QWnM+m9l3vZPvPjt+2/4h+Jmqw+DvgrbasvnefHNqFrZl76+AVwRbRgM8abAZPMwso44j2Hd1v7Nn7AFj4bxrvxRtrTWdSPlSWmhxSs9vakbXJnIwJXDAoY/miwGyZNw2+7/AX9mjwh8AdKX+yLb7b4hmtlgv9duM+dc4YsQqkkRIWI+ROoRNxcqGr1quWhls601iMe+afRfZXy/r57nu5txphsuw0sm4Sg6FB6SqbValnu5LVLe3Wzt7qbiFFFFfQn46FFFFABX5q/Frxrqnw8/4KNar4g0XwzeeMdTs/K8nRLAuJrnfpCI23Yjn5VYucKeFPTqP0qr89Pi1ZePfh5+3fqvxJ0X4aeI/GOmWfleSLCxuBDc79LS3bbMkTj5WY5wDypHHb9Q4AcPrWNhNKXNh6kVGUuVSbcfd5rq3Nte6tvc+gyZr2lVNJ3hJWbtfbS/mav7O1/ofjr9sLWPGvjazufAXj25VjpHg+9tZYTj7KsLTeY6oHYoJfkKjJLMM44+9q+GfDXgX4lftJ/tN+Evih4k8EXfw60Dw/HCogv53S4l8mSWRVClEdi0j4OVVdmeT0P3NXFxpKnLFYflmuZUoxcFJTVPlulBSV72Wurbu9W7mWauLqQs9VFJq91G3RP8Ar1Ciiivzw8QKKKKACvgT/gqr/wA0v/7in/tpX33XwJ/wVV/5pf8A9xT/ANtK/R/Dv/kp8J/2/wD+m5nu5H/yMKfz/wDSWfXn7Pv/ACQT4a/9izpv/pLHXf1wH7Pv/JBPhr/2LOm/+ksdd/XxWZf79X/xy/Nnk1/40/V/mFFFFeaYBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfAn/AAVV/wCaX/8AcU/9tK++6+Bv+CqUbSH4XhVJ/wCQp0/7dK+/4DxFHCcRYatiJqEFz3cmkl+7nu3oj6Hh+lOtmdKnTi5Sd7JK7+F9D66/Z9/5IJ8Nf+xZ03/0ljrwv9qP9uLS/hp/bHhHwU39peM4cQS6jtV7PTnO4OOSfMmTAGzGxWb5iSjRn5v1D4//ABH+NPg/wr8Jfhvpmoppdn4fstJ1GGyiDT3zLHDFLJLJz5FuHwmdygq5MjYfYv0/+zR+w7ofwl+za/4wW08R+M4Lnz7V4WdrOw25CGNWC+Y/Ife6/KwXYAU3t+U5nmFXNMbXhlvwOUvf6Wbfw/p/TP1Slw1lXCcf7U4rlz1XrDDRacnrdOo9lHutrd3eB4t8F/2OvGvxv8ZHx/8AGGW7tLC7uZJ7qwvt8OpXzIVVVZNo8iE4KjG1gsYCKqsjj728J+E9H8C+HNP0DQNPh0vSLCMRW9rADtRc5JJPLMSSSxJLEkkkkmteitcHgKOCT5NZPdvdn59xJxZmPE1SP1lqFKGkKcdIRS0VltdLS+9tFZaBRRRXpHxYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV8Cf8FVf+aX/APcU/wDbSvvuvgT/AIKq/wDNL/8AuKf+2lfo/h3/AMlPhP8At/8A9NzPdyP/AJGFP5/+ks+vP2ff+SCfDX/sWdN/9JY67+uA/Z9/5IJ8Nf8AsWdN/wDSWOu/r4rMv9+r/wCOX5s8mv8Axp+r/MKKKK80wCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACq+oaha6RYXN9fXMNlZWsTTz3NxII44o1BLO7HAVQASSeABVivGf2xfCOs+Ov2bfGmjaBp82q6rLFbzRWduAZJFiuopXCL/ABNsRiFGSxGACSAfQy/DwxmMo4arPkjOUYuX8qbSb1ttubUIKrVjTk7JtK/a73PTvCPizTPHXhrT9f0aWafStQiE9rNPbS27SRk/K4SVVcK3UEjDAhhkEE1/+Fg+Fv8AhK/+EX/4SXR/+Em/6Av2+L7Z/q/M/wBTu3/c+fp93npXy38SPjR428RfFrwlefDjxL41vvhdq0UM2p6hoHguPULezU8EW8zW5d24/eKQ5hbeMOwMCb/xO0OTxF8UfBth4c8F67ZNpvj221PVNLn0RLfSLlVjleXWhewIA8uHTAe4yzIFeAtlT9WuG1TnF4ifLGcJSSu+aFulTmjFXWztZbNuKav6X1CzXO7JpvzVv5rpf11Wh9S18lftqfsq6r8Ztd0rxfoutaPo40zTZLfVJdfvHt7aKCNmlSRSsT4x5kxdmIAATHQmvo7QfGejfEiw8R2/h3WZhNpd9c6Hd3dvAUks7yMAOEE0ZRmTepB2uhP94ZFfLXwc8QfEvx1ZfEC4+Jsl58QfDPg65m0a+8M6fpWmXceu38MzGRoo3hicJCnkOsZ+aR8FWJHk14eF4fjmFOrLGqKhSceaE3KMnzOy5bW1v3lFapv3bs9HIcfj8kxTzDA1FTqQ01SbtLS1mmn89tH5nzLefsT+I28Gap4ug+IHgTWPDml7vtl9ol9d6ikG0KWyLe1c/KrKzcfKvzHCjNdLp/8AwTU+JGr2FtfWPijwVe2V1Es8Fzb6hcyRyxsAVdGFuQykEEEcEGvqz4QalH8O/FPxt8feK59StfCk0umSReLPFFi+n3t8sVoEdGtvKh+WN2VI9lupkaQqDKwG3r/2OvCOs+Bf2bfBeja/p82larFFcTS2dwAJI1lupZUDr/C2x1JU4Kk4IBBA/WK3FmY5HgHSwDhCFOVOMYqEVG06bnJJJLWnLSWl25rmjCWj9PHZ9mFVzxFWpzTbjq9W7xu/P3dn6rRbHxX/AMOxPil/0H/CH/gZdf8AyNR/w7E+KX/Qf8If+Bl1/wDI1fp1RXgf8RO4h/mh/wCAo8f/AFgx3dfcfmL/AMOxPil/0H/CH/gZdf8AyNR/w7E+KX/Qf8If+Bl1/wDI1fp1RR/xE7iH+aH/AICg/wBYMd3X3H5i/wDDsT4pf9B/wh/4GXX/AMjUf8OxPil/0H/CH/gZdf8AyNX6dUUf8RO4h/mh/wCAoP8AWDHd19x+Yv8Aw7E+KX/Qf8If+Bl1/wDI1H/DsT4pf9B/wh/4GXX/AMjV+nVFH/ETuIf5of8AgKD/AFgx3dfcfmL/AMOxPil/0H/CH/gZdf8AyNR/w7E+KX/Qf8If+Bl1/wDI1fp1RR/xE7iH+aH/AICg/wBYMd3X3H5i/wDDsT4pf9B/wh/4GXX/AMjUf8OxPil/0H/CH/gZdf8AyNX6dUUf8RO4h/mh/wCAoP8AWDHd19x+Yv8Aw7E+KX/Qf8If+Bl1/wDI1H/DsT4pf9B/wh/4GXX/AMjV+nVFH/ETuIf5of8AgKD/AFgx3dfcfmL/AMOxPil/0H/CH/gZdf8AyNR/w7E+KX/Qf8If+Bl1/wDI1fp1RR/xE7iH+aH/AICg/wBYMd3X3H5i/wDDsT4pf9B/wh/4GXX/AMjUf8OxPil/0H/CH/gZdf8AyNX6dUUf8RO4h/mh/wCAoP8AWDHd19xzHwt8MXXgj4ZeEfDt9JDLe6Ro9np88luxaNpIoUjYoSASpKnGQDjsK6eiivy2tVlXqSqz3k236vU+dlJzk5PqFFFFYkhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAY9j4O0DTPDTeHbPQ9NtPD7RSQNpMFpGloY5CxkQxAbNrbmyMYO456mrGg+HtL8K6TBpei6bZ6PpkG7ybKwgSCGPcxZtqIABlmJOByST3rQoraVapNNSk2m7vXd935+ZTlJ6NhRRRWJIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9k=" alt="" />
 
 
 
 #include <cstdio>
#include <algorithm>
using namespace std; double x1,y1,x2,y2,x3,y3,x4,y4;
double tmp; int main()
{
while(~scanf("%lf%lf%lf%lf%lf%lf%lf%lf",&x1,&y1,&x2,&y2,&x3,&y3,&x4,&y4)){
if(x1>x2){ //使(x1,y1)为左下角点,(x2,y2)为右上角点
tmp = x1;
x1 = x2;
x2 = tmp;
}
if(y1>y2){
tmp = y1;
y1 = y2;
y2 = tmp;
}
if(x3>x4){ //使(x3,y3)为左下角点,(x4,y4)为右上角点
tmp = x3;
x3 = x4;
x4 = tmp;
}
if(y3>y4){
tmp = y3;
y3 = y4;
y4 = tmp;
}
double length = min(x2,x4)-max(x1,x3);
double width = min(y2,y4)-max(y1,y3);
printf("%.2f\n",length< || width< ? :length*width);
}
return ;
}
 

HDU 2056 Rectangles的更多相关文章

  1. HDOJ 2056 Rectangles

    Problem Description Given two rectangles and the coordinates of two points on the diagonals of each ...

  2. HDU 2461 Rectangles#容斥原理

    http://acm.hdu.edu.cn/showproblem.php?pid=2461 题目很简单,但是由于询问数M可以很大,所以容易超时,这道题学到了在结构体里面写函数的方法,这样子效率更高, ...

  3. HDU 2056 龟兔赛跑 (DP)

    题意:见题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2059 解题报告:以前一直没看出来这题是个DP题,知道是DP题就简单了 .首先要把起点和终点看成 ...

  4. hdu 2056

    ps:    - -惭愧...是套用一个大神的计算方法来做的.....下面是代码 代码: #include "stdio.h"#include "stdlib.h&quo ...

  5. hdu 2461 Rectangles

    求矩形的并 矩形个数 1...20m次询问 回答要求的r个矩形的并容斥原理dfs优化: 遇到面积交为0时 这个dfs分支可以不下去了 #include <iostream> #includ ...

  6. 杭电oj2047-2049、2051-2053、2056、2058

    2047  阿牛的EOF牛肉串 #include<stdio.h> int main(){ int n,i; _int64 s[]; while(~scanf("%d" ...

  7. HDOJ(2056)&HDOJ(1086)

    Rectangles    HDOJ(2056) http://acm.hdu.edu.cn/showproblem.php?pid=2056 题目描述:给2条线段,分别构成2个矩形,求2个矩形相交面 ...

  8. HDU 1892 See you~ (二维树状数组)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1892 See you~ Problem Description Now I am leaving h ...

  9. HDU——PKU题目分类

    HDU 模拟题, 枚举1002 1004 1013 1015 1017 1020 1022 1029 1031 1033 1034 1035 1036 1037 1039 1042 1047 1048 ...

随机推荐

  1. How to Enable 64-bit Processes for Enhanced Protected Mode in Internet Explorer 11 (IE11)

       Information Enhanced Protected Mode (EPM) adds additional security to Protected Mode and includes ...

  2. Java中finalize()

    垃圾回收器要回收对象的时候,首先要调用这个类的finalize方法(你可以 写程序验证这个结论),一般的纯Java编写的Class不需要重新覆盖这个方法,因为Object已经实现了一个默认的,除非我们 ...

  3. 0到N数其中三个数的全排列

    #include<iostream> using namespace std; int main(){ ; int count; count=; ;i<=N;i++) ;j<= ...

  4. css中的:before与:after的简单使用

    直接上代码,不多说了! 画三角形 1). <style type="text/css"> .triangle{ width: 0; height: 0; /*borde ...

  5. JAVA XMLConfiguration解决StringXML及多节点

    import org.apache.commons.configuration.ConfigurationException; import org.apache.commons.configurat ...

  6. BCB常用文件与字符串函数

    VCL库函数简介 一.BORLAND C++ BUILDER VCL的内存管理函数 1. AllocMem 在队中分配指定字节的内存块,并将分配的每一个字节初始化为 0.函数原型如下: void * ...

  7. svn:...target\classes\META-INF\MANIFEST.MF (系统找不到指定的路径。)

    在上传项目到svn时,pom.xml报错

  8. 机器人学 —— 轨迹规划(Introduction)

    轨迹规划属于机器人学中的上层问题,其主要目标是计划机器人从A移动到B并避开所有障碍的路线. 1.轨迹计划的对象 轨迹规划的对象是map,机器人通过SLAM获得地map后,则可在地图中选定任意两点进行轨 ...

  9. HDU 4686 Arc of Dream(矩阵)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4686 题意: 思路: #include <iostream>#include <cs ...

  10. [POJ2377]Bad Cowtractors(最大生成树,Kruskal)

    题目链接:http://poj.org/problem?id=2377 于是就找了一道最大生成树的AC了一下,注意不连通的情况啊,WA了一次. /* ━━━━━┒ギリギリ♂ eye! ┓┏┓┏┓┃キリ ...