UVa 12661 (单源最短路) Funny Car Racing
题意:
有一个赛车跑道,可以看做一个加权有向图。每个跑道(有向边)还有一个特点就是,会周期性地打开a秒,然后关闭b秒。只有在赛车进入一直到出来,该跑道一直处于打开状态,赛车才能通过。
开始时所有跑道处于刚打开的状态,求从起点到终点的最短时间。
分析:
设d[i]为起点到节点i的最短时间。
和普通的单源最短路问题一样,只不过在进行松弛操作的时候分两种情况。松弛的前提是,赛道打开的时间不短于赛车通过的时间。
- 赛车从进入直到出跑道,一直是打开状态。则d[v] = min(d[v], d[u] + t)
- 赛道已经关闭或会在中途关闭,则只能等到下次刚刚打开时进入,因此有个等待时间。d[v] = min(d[v], d[u] + wait + t)
#include <bits/stdc++.h>
using namespace std; const int maxn = + ;
const int INF = ; struct Edge
{
int from, to, a, b, t;
Edge(int u, int v, int a, int b, int t):from(u), to(v), a(a), b(b), t(t) {}
}; vector<Edge> edges;
vector<int> G[maxn];
bool inq[maxn];
int n, m, s, t, d[maxn]; void Init()
{
edges.clear();
for(int i = ; i < n; ++i) G[i].clear();
} void AddEdge(int u, int v, int a, int b, int t)
{
edges.push_back(Edge(u, v, a, b, t));
int m = edges.size();
G[u].push_back(m-);
} void SPFA()
{
memset(inq, false, sizeof(inq));
for(int i = ; i < n; ++i) d[i] = INF;
queue<int> Q;
d[s] = ; inq[s] = true; Q.push(s); while(!Q.empty())
{
int u = Q.front(); Q.pop();
inq[u] = false;
for(int i = ; i < G[u].size(); ++i)
{
Edge& e = edges[G[u][i]];
int v = e.to, a = e.a, b = e.b, t = e.t;
if(a < t) continue;
int now = d[u] % (a+b);
if(now + t <= a)
{//情况一
if(d[v] > d[u] + t)
{
d[v] = d[u] + t;
Q.push(v);
inq[v] = true;
}
}
else
{//情况二
int wait = a + b - now;
if(d[v] > d[u] + wait + t)
{
d[v] = d[u] + wait + t;
Q.push(v);
inq[v] = true;
}
}
}
}
} int main()
{
//freopen("in.txt", "r", stdin); int kase = ;
while(scanf("%d%d%d%d", &n, &m, &s, &t) == )
{
s--; t--;
Init();
for(int i = ; i < m; ++i)
{
int u, v, a, b, t;
scanf("%d%d%d%d%d", &u, &v, &a, &b, &t);
AddEdge(u-, v-, a, b, t);
}
SPFA();
printf("Case %d: %d\n", ++kase, d[t]);
} return ;
}
代码君
UVa 12661 (单源最短路) Funny Car Racing的更多相关文章
- 紫书 习题 11-7 UVa 10801 (单源最短路变形)
把每个电梯口看作一个节点, 然后计算边的权值的时候处理一下, 就ok了. #include<cstdio> #include<vector> #include<queue ...
- 最短路模板(Dijkstra & Dijkstra算法+堆优化 & bellman_ford & 单源最短路SPFA)
关于几个的区别和联系:http://www.cnblogs.com/zswbky/p/5432353.html d.每组的第一行是三个整数T,S和D,表示有T条路,和草儿家相邻的城市的有S个(草儿家到 ...
- [ACM_图论] Domino Effect (POJ1135 Dijkstra算法 SSSP 单源最短路算法 中等 模板)
Description Did you know that you can use domino bones for other things besides playing Dominoes? Ta ...
- 用scheme语言实现SPFA算法(单源最短路)
最近自己陷入了很长时间的学习和思考之中,突然发现好久没有更新博文了,于是便想更新一篇. 这篇文章是我之前程序设计语言课作业中一段代码,用scheme语言实现单源最段路算法.当时的我,花了一整天时间,学 ...
- 单源最短路_SPFA_C++
当我们需要求一个点到其它所有点的最短路时,我们可以采用SPFA算法 代码特别好写,而且可以有环,但是不能有负权环,时间复杂度是O(α(n)n),n为边数,α(n)为n的反阿克曼函数,一般小于等于4 模 ...
- 【UVA1416】(LA4080) Warfare And Logistics (单源最短路)
题目: Sample Input4 6 10001 3 21 4 42 1 32 3 33 4 14 2 2Sample Output28 38 题意: 给出n个节点m条无向边的图,每条边权都为正.令 ...
- 【算法系列学习】Dijkstra单源最短路 [kuangbin带你飞]专题四 最短路练习 A - Til the Cows Come Home
https://vjudge.net/contest/66569#problem/A http://blog.csdn.net/wangjian8006/article/details/7871889 ...
- 模板C++ 03图论算法 1最短路之单源最短路(SPFA)
3.1最短路之单源最短路(SPFA) 松弛:常听人说松弛,一直不懂,后来明白其实就是更新某点到源点最短距离. 邻接表:表示与一个点联通的所有路. 如果从一个点沿着某条路径出发,又回到了自己,而且所经过 ...
- 2018/1/28 每日一学 单源最短路的SPFA算法以及其他三大最短路算法比较总结
刚刚AC的pj普及组第四题就是一种单源最短路. 我们知道当一个图存在负权边时像Dijkstra等算法便无法实现: 而Bellman-Ford算法的复杂度又过高O(V*E),SPFA算法便派上用场了. ...
随机推荐
- 关于json的知识整理
一.什么是json JSON:JavaScript 对象表示法(JavaScript Object Notation). JSON 是存储和交换文本信息的语法.类似 XML,但JSON 比 XML 更 ...
- WPF简单布局 浅尝辄止
WPF的窗口只能包含一个元素,为了在WPF窗口中放置多个元素并创建更实用的用户界面,需要在窗口上放置一个容器,然后在容器中放置其它元素. 注意:造成这一限制的原因是window类继承自 ...
- trie树(前缀树)
问题描述: Trie树,即字典树,又称单词查找树或键树,是一种树形结构,是一种哈希树的变种.典型应用是用于统计和排序大量的字符串(但不仅限于字符串),所以经常被搜索引擎系统用于文本词频统计.它的优 ...
- T-SQL操作表结构(转)
在网上整理的一牛人资料,收集与此与君共享 用SQL语句添加删除修改字段1.增加字段 ALTER TABLE [yourTableName] ADD [newColumnName] newCo ...
- 【Hibernate总结系列】....hbm.xml配置
在Hibernate中,各表的映射文件….hbm.xml可以通过工具生成,例如在使用MyEclipse开发时,它提供了自动生成映射文件的工具.本节简单的讲述一下这些配置文件的配置. 配置文件的基本结构 ...
- 01-06-01【Nhibernate (版本3.3.1.4000) 出入江湖】事务
Nhibernate事务的使用: public void Add(Customer customer) { ISession session = _sessionManager.GetSession( ...
- MySQL 当记录不存在时插入(insert if not exists)
在 MySQL 中,插入(insert)一条记录很简单,但是一些特殊应用,在插入记录前,需要检查这条记录是否已经存在,只有当记录不存在时才执行插入操作,本文介绍的就是这个问题的解决方案.问题:我创建了 ...
- hdu 1426 Sudoku Killer
题目:http://acm.hdu.edu.cn/showproblem.php?pid=1426 #include<stdio.h> #include<math.h> #in ...
- cvc-elt.1: Cannot find the declaration of element---与spring 无关的schema 验证失败
晚上查了好久,都是spring 出这种问题的解决方式,终于查到为什么了. http://wakan.blog.51cto.com/59583/7218/ 转自这个人.. 多谢啦! 为了验证 XML 文 ...
- 毕向东JAVA视频讲解(第七课)
构造函数:构建创造对象时调用的函数.作用:可以给对象进行初始化. 创建对象都必须要通过构造函数初始化. 一个类中如果没有定义过构造函数,那么该类中会有一个默认的空参数构造函数. 如果在类中定义了指定的 ...