UVa 1363 (数论 数列求和) Joseph's Problem
题意:
给出n, k,求
分析:
假设,则k mod (i+1) = k - (i+1)*p = k - i*p - p = k mod i - p
则对于某个区间,i∈[l, r],k/i的整数部分p相同,则其余数成等差数列,公差为-p
然后我想到了做莫比乌斯反演时候有个分块加速,在区间[i, n / (n / i)],n/i的整数部分相同,于是有了这份代码。
#include <cstdio>
#include <algorithm>
using namespace std;
typedef long long LL; int main()
{
LL n, k;
while(scanf("%lld%lld", &n, &k) == )
{
LL ans = ;
LL i, j, r = min(n, k);
for(i = ; i <= r; i = j + )
{
j = k / (k / i);
if(j > r) j = r; LL d = -k / i;
LL l = j - i + ;
LL a1 = k % i;
ans += (LL) (a1*l + l*(l-)/*d);
}
if(n > k)
ans += (LL) (n-k) * k; printf("%lld\n", ans);
} return ;
}
代码君
后来试了一下lrj的代码,比我的短还比我的快,给跪了
// UVa1363 Joseph's Problem
// Rujia Liu
#include<iostream>
#include<algorithm>
using namespace std; // 首项为a,公差为-d,除了首项之外还有n项
// 末项为a-n*d,平均数为(2*a-n*d)/2
long long sum(int a, int d, int n) {
return (long long)(*a-n*d)*(n+)/;
} int main() {
int n, k;
while(cin >> n >> k) {
int i = ;
long long ans = ;
while(i <= n) {
int q = k % i, p = k / i;
int cnt = n - i; // 最多还有n - i项
if(p > ) cnt = min(cnt, q / p);
ans += sum(q, p, cnt);
i += cnt + ;
}
cout << ans << "\n";
}
return ;
}
更快的代码君
UVa 1363 (数论 数列求和) Joseph's Problem的更多相关文章
- UVA 1363 Joseph's Problem 找规律+推导 给定n,k;求k%[1,n]的和。
/** 题目:Joseph's Problem 链接:https://vjudge.net/problem/UVA-1363 题意:给定n,k;求k%[1,n]的和. 思路: 没想出来,看了lrj的想 ...
- C语言程序设计100例之(23):数列求和
例23 数列求和 问题描述 已知某数列前两项为2和3,其后继项根据前面最后两项的乘积,按下列规则生成: ① 若乘积为一位数,则该乘积即为数列的后继项: ② 若乘积为二位数,则该乘积的十位上的数字和个 ...
- 李洪强漫谈iOS开发[C语言-047]-数列求和
// // main.c // 53 - 数列求和 - 李洪强 // // Created by vic fan on 16/10/15. // Copyright © 2016年 李洪强. ...
- 40. 特殊a串数列求和
特殊a串数列求和 #include <stdio.h> int main() { int i, a, n, item, sum, temp; while (scanf("%d % ...
- GMA Round 1 数列求和(Hard)
传送门 数列求和(Hard) 在数列{$a_n$}中,$a_1=-\frac{1}{4}$,$\frac{1}{a_{n+1}}+\frac{1}{a_n}=\begin{cases}-3(n为偶数) ...
- 数列求和 Exercise06_13
/** * @author 冰樱梦 * 时间:2018年下半年 * 题目:数列求和 * */ public class Exercise06_13 { public static void main( ...
- 解题报告:luogu P5745 【深基附B例】数列求和
题目链接:P5745 [深基附B例]数列求和 现在想说:\(O(N)\)的题要不怎么也想不出来,要不灵光乍现,就像这道题. 我们维护一个类似单调队列的加法单调队列: 若相加大于此数,就将队尾元素弹出, ...
- luogu P4948 数列求和 推式子 简单数学推导 二项式 拉格朗日插值
LINK:数列求和 每次遇到这种题目都不太会写.但是做法很简单. 终有一天我会成功的. 考虑类似等比数列求和的东西 帽子戏法一下. 设\(f(k)=\sum_{i=1}^ni^ka^i\) 考虑\(a ...
- UVa 1363 - Joseph's Problem(数论)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
随机推荐
- python del函数
del用于list列表及字典操作,删除一个或者连续几个元素也可以删除字典指定的key 示例程序如下: >>> a = [-1, 3, 'aa', 85] # 定义一个list&g ...
- Django设置
运行 django-admin.py startproject [project-name] 命令会生成一系列文件,在Django 1.6版本以后的 settings.py 文件中有以下语句: # B ...
- s3c-u-boot-1.1.6源码分析之一start.s
定位到\s3c-u-boot-1.1.6\cpu\s3c64xx\start.s,打开该文件 /* * armboot - Startup Code for S3C6400/ARM1176 CPU-c ...
- JS和JSP的区别
最近很多同学在纠结于名词缩写之间的相似性,因此本人也来写一篇,讲讲JS和JSP的区别. SUN首先发展出SERVLET,其功能比较强劲,体系设计也很先进,只是,它输出HTML语句还是采用了老的CGI方 ...
- Nested Loop,Sort Merge Join,Hash Join
三种连接工作方式比较: Nested loops 工作方式是从一张表中读取数据,访问另一张表(通常是索引)来做匹配,nested loops适用的场合是当一个关联表比较小的时候,效率会更高. Merg ...
- kappa 一致性系数计算实例
kappa系数在遥感分类图像的精度评估方面有重要的应用,因此学会计算kappa系数是必要的 实例1 实例2
- Impala入门笔记
From:http://tech.uc.cn/?p=817 问题背景: 初步了解Impala的应用 重点测试Impala的查询速度是否真的如传说中的比Hive快3~30倍 写作目的: 了解Impala ...
- iOS的layoutSubviews和drawRect方法何时调用
layoutSubviews在以下情况下会被调用: 1.init初始化不会触发layoutSubviews.2.addSubview会触发layoutSubviews.3.设置view的Frame会触 ...
- bnuoj 29373 Key Logger(模拟双向队列)
http://www.bnuoj.com/bnuoj/problem_show.php?pid=29373 [题意]:模拟光标输入 [题解]:用双向列表模拟实现,这里用其他模拟会超时,注意内存的释放 ...
- 【高斯消元】BZOJ 1013: [JSOI2008]球形空间产生器sphere
Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁 ...