题意:

给出n, k,求

分析:

假设,则k mod (i+1) = k - (i+1)*p = k - i*p - p = k mod i - p

则对于某个区间,i∈[l, r],k/i的整数部分p相同,则其余数成等差数列,公差为-p

然后我想到了做莫比乌斯反演时候有个分块加速,在区间[i, n / (n / i)],n/i的整数部分相同,于是有了这份代码。

 #include <cstdio>
#include <algorithm>
using namespace std;
typedef long long LL; int main()
{
LL n, k;
while(scanf("%lld%lld", &n, &k) == )
{
LL ans = ;
LL i, j, r = min(n, k);
for(i = ; i <= r; i = j + )
{
j = k / (k / i);
if(j > r) j = r; LL d = -k / i;
LL l = j - i + ;
LL a1 = k % i;
ans += (LL) (a1*l + l*(l-)/*d);
}
if(n > k)
ans += (LL) (n-k) * k; printf("%lld\n", ans);
} return ;
}

代码君

后来试了一下lrj的代码,比我的短还比我的快,给跪了

 // UVa1363 Joseph's Problem
// Rujia Liu
#include<iostream>
#include<algorithm>
using namespace std; // 首项为a,公差为-d,除了首项之外还有n项
// 末项为a-n*d,平均数为(2*a-n*d)/2
long long sum(int a, int d, int n) {
return (long long)(*a-n*d)*(n+)/;
} int main() {
int n, k;
while(cin >> n >> k) {
int i = ;
long long ans = ;
while(i <= n) {
int q = k % i, p = k / i;
int cnt = n - i; // 最多还有n - i项
if(p > ) cnt = min(cnt, q / p);
ans += sum(q, p, cnt);
i += cnt + ;
}
cout << ans << "\n";
}
return ;
}

更快的代码君

UVa 1363 (数论 数列求和) Joseph's Problem的更多相关文章

  1. UVA 1363 Joseph's Problem 找规律+推导 给定n,k;求k%[1,n]的和。

    /** 题目:Joseph's Problem 链接:https://vjudge.net/problem/UVA-1363 题意:给定n,k;求k%[1,n]的和. 思路: 没想出来,看了lrj的想 ...

  2. C语言程序设计100例之(23):数列求和

    例23  数列求和 问题描述 已知某数列前两项为2和3,其后继项根据前面最后两项的乘积,按下列规则生成: ① 若乘积为一位数,则该乘积即为数列的后继项: ② 若乘积为二位数,则该乘积的十位上的数字和个 ...

  3. 李洪强漫谈iOS开发[C语言-047]-数列求和

    // //  main.c //  53 - 数列求和 - 李洪强 // //  Created by vic fan on 16/10/15. //  Copyright © 2016年 李洪强. ...

  4. 40. 特殊a串数列求和

    特殊a串数列求和 #include <stdio.h> int main() { int i, a, n, item, sum, temp; while (scanf("%d % ...

  5. GMA Round 1 数列求和(Hard)

    传送门 数列求和(Hard) 在数列{$a_n$}中,$a_1=-\frac{1}{4}$,$\frac{1}{a_{n+1}}+\frac{1}{a_n}=\begin{cases}-3(n为偶数) ...

  6. 数列求和 Exercise06_13

    /** * @author 冰樱梦 * 时间:2018年下半年 * 题目:数列求和 * */ public class Exercise06_13 { public static void main( ...

  7. 解题报告:luogu P5745 【深基附B例】数列求和

    题目链接:P5745 [深基附B例]数列求和 现在想说:\(O(N)\)的题要不怎么也想不出来,要不灵光乍现,就像这道题. 我们维护一个类似单调队列的加法单调队列: 若相加大于此数,就将队尾元素弹出, ...

  8. luogu P4948 数列求和 推式子 简单数学推导 二项式 拉格朗日插值

    LINK:数列求和 每次遇到这种题目都不太会写.但是做法很简单. 终有一天我会成功的. 考虑类似等比数列求和的东西 帽子戏法一下. 设\(f(k)=\sum_{i=1}^ni^ka^i\) 考虑\(a ...

  9. UVa 1363 - Joseph's Problem(数论)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

随机推荐

  1. cwm-recovery自动生成工具

    android发展迅速,刷机已经成了一种习惯,cwm-recovery是必不可少的工具,下面我把自己用的自动生成cwm-recovery的工具发布出来,供友友们交流和学习,欢迎拍砖 已经公开发布在gi ...

  2. buffer busy wait在RAC环境下出现

    昨天运维组的同时反映有套系统用户反映很慢,需要协助帮忙检查什么原因引起的性能问题.导出了从8点到11点的AWR报告进行分析,发现等待事件里大部分的指标都正常,就是buffer busy wait的平均 ...

  3. 快捷设置IE代理小工具

    时间:2015-02-06 起因: 公司新装了PLM系统,用这个系统必须使用指定IP段的IP才能访问.所以为了还能愉快的继续使用代理进行特定网站的访问,我们必须要频繁的去设置IE代理,这也太麻烦了吧. ...

  4. having与where区别

    having后可以跟组函数如avg(sal)而where后不可以有, 如果条件不是必须使用组函数最好还是使用where

  5. OC 数据类型之间的转换方法

      NSNumber转NSString: 假设现有一NSNumber的变量A,要转换成NSString类型的B 方法如下: NSNumberFormatter* numberFormatter = [ ...

  6. hdu 4706 Children's Day(模拟)

    http://acm.hdu.edu.cn/showproblem.php?pid=4706 [题目大意]: 用a-z排出N的形状,输出大小为3-10的N,如果超过z之后,重新从a开始 下面是大小为3 ...

  7. maven eclipse web项目流程(简化内容)

    1.maven eclipse 环境搭建 1.1 下载解压配置环境变量(解压.环境变量maven目录到bin.setting.xml 改本地仓库) 1.2 eclipse插件安装配置(link安装.加 ...

  8. linux 下安装JDK1.7

    安装JDK1.7 1. 打开网址http://www.oracle.com/technetwork/java/javase/downloads/jdk-7u5-downloads-1591156.ht ...

  9. hdu 1024

    参考了一下 http://moxi466839201.blog.163.com/blog/static/18003841620110220374942/ 滚动数组   状态转移方程不太好理解 .... ...

  10. Android支付接入(四):联通VAC计费

    原地址:http://blog.csdn.net/simdanfeg/article/details/9012031 注意事项: 1.联通支付是不需要自己标识软硬计费点的,当平台申请计费点的时候会提交 ...