命题 1: 定义区间$I$上的Schwarz导数
$$D^{2}f(x)=\lim_{h\to 0}\frac{f(x+h)+f(x-h)-2f(x)}{h^{2}}$$
若$D^{2}f(x)\geq 0$则$f(x)$为$I$上的下凸函数,若$D^{2}f(x)\leq 0$,则$f(x)$为$I$上的上凸函数.
证明: 任意$\varepsilon >0$,构造辅助函数
$$F(x)=f(x)-\left[f(a)+\frac{f(b)-f(a)}{b-a}(x-a)\right]+\varepsilon (x-a)(x-b)$$
经计算有
\begin{align*}
D^{2}F(x)&=\lim_{h\to 0}\frac{F(x+h)+F(x-h)-2F(x)}{h^{2}}\\
&=\lim_{h\to 0}\frac{f(x+h)+f(x-h)-2f(x)}{h^{2}}+2\varepsilon\\
&\geq 2\varepsilon
\end{align*}
构造的辅助函数满足$F(a)=F(b)=0$且为$[a,b]$上的连续函数, 我们证明其最大值必然在端点处取到, 否则设$x_{0}\in (a,b)$且$F(x_{0})=\max_{x\in [a,b]}\{F(x)\}$
$$\frac{F(x_{0}+h)+F(x_{0}-h)-2F(x_{0})}{h^{2}}\leq 0$$
取$h\to 0$得$D^{2}F(x_{0})\leq 0$与$D^{2}F(x)\geq 2\varepsilon$矛盾. 故$F(x)\leq F(a)=0$即
$$f(x)\leq f(a)+\frac{f(b)-f(a)}{b-a}(x-a)-\varepsilon (x-a)(x-b)$$
令$\varepsilon \to 0$,有
$$f(x)\leq f(a)+\frac{f(b)-f(a)}{b-a}(x-a)$$
取$x=\frac{a+b}{2}$, 便得
$$f\left(\frac{a+b}{2}\right)\leq \frac{1}{2}f(a)+\frac{1}{2}f(b)$$
$f(x)$为$I$上下凸函数, 反之证明方法类似只需把$\varepsilon$改为负的即可.

命题 2:  若$f(x)$既为$I$上的下凸函数又为上凸函数,则$f(x)$为$I$上的线性函数.
证明:  设$x=\lambda_{1}a+\lambda_{2}b$,其中$\lambda_{1}+\lambda_{2}=1$.那么
$$f(x)=f(\lambda_{1}a+\lambda_{2}b)=\lambda_{1}f(a)+\lambda_{2}(b)$$
经简单计算
$$\frac{f(x)-f(a)}{x-a}=\frac{(\lambda_{1}-1)f(a)+\lambda_{2} f(b)}{(\lambda_{1}-1)a+\lambda_{2}b}=\frac{f(b)-f(a)}{b-a}$$

$$f(x)=f(a)+\frac{f(b)-f(a)}{b-a}(x-a)$$

Schwarz导数与凹凸性的更多相关文章

  1. matlab练习程序(多边形顶点凹凸性)

    生成简单多边形后,有时还需要对多边形各顶点的凹凸性做判断. 先计算待处理点与相邻点的两个向量,再计算两向量的叉乘,根据求得结果的正负可以判断凹凸性. 结果为负则为凹顶点,为正则为凸顶点. 凹顶点用o表 ...

  2. PCL—低层次视觉—点云分割(基于凹凸性)

    1.图像分割的两条思路 场景分割时机器视觉中的重要任务,尤其对家庭机器人而言,优秀的场景分割算法是实现复杂功能的基础.但是大家搞了几十年也还没搞定——不是我说的,是接下来要介绍的这篇论文说的.图像分割 ...

  3. 装载:关于拉格朗日乘子法与KKT条件

    作者:@wzyer 拉格朗日乘子法无疑是最优化理论中最重要的一个方法.但是现在网上并没有很好的完整介绍整个方法的文章.我这里尝试详细介绍一下这方面的有关问题,插入自己的一些理解,希望能够对大家有帮助. ...

  4. 关于拉格朗日乘子法与KKT条件

    关于拉格朗日乘子法与KKT条件 关于拉格朗日乘子法与KKT条件   目录 拉格朗日乘子法的数学基础 共轭函数 拉格朗日函数 拉格朗日对偶函数 目标函数最优值的下界 拉格朗日对偶函数与共轭函数的联系 拉 ...

  5. 【ML数学知识】极大似然估计

    它是建立在极大似然原理的基础上的一个统计方法,极大似然原理的直观想法是,一个随机试验如有若干个可能的结果A,B,C,... ,若在一次试验中,结果A出现了,那么可以认为实验条件对A的出现有利,也即出现 ...

  6. Matlab随笔之插值与拟合(上)

    原文:Matlab随笔之插值与拟合(上) 1.拉格朗日插值 新建如下函数: function y=lagrange(x0,y0,x) %拉格朗日插值函数 %n 个节点数据以数组 x0, y0 输入(注 ...

  7. [白话解析] 深入浅出 极大似然估计 & 极大后验概率估计

    [白话解析] 深入浅出极大似然估计 & 极大后验概率估计 0x00 摘要 本文在少用数学公式的情况下,尽量仅依靠感性直觉的思考来讲解 极大似然估计 & 极大后验概率估计,并且从名著中找 ...

  8. Alink漫谈(十一) :线性回归 之 L-BFGS优化

    Alink漫谈(十一) :线性回归 之 L-BFGS优化 目录 Alink漫谈(十一) :线性回归 之 L-BFGS优化 0x00 摘要 0x01 回顾 1.1 优化基本思路 1.2 各类优化方法 0 ...

  9. Ideas and Tricks

    1.树上拓扑排序计数 结论$\dfrac{n!}{\prod\limits_{i=1}^n size_i}$ 对于节点$i$,其子树随意排序的结果是$size[i]!$ 但$i$需要排在第一位,只有$ ...

随机推荐

  1. Codeforces Round #270

    A 题意:给出一个数n,求满足a+b=n,且a+b均为合数的a,b 方法一:可以直接枚举i,n-i,判断a,n-i是否为合数 #include<iostream> #include< ...

  2. [swustoj 1023] Escape

    Escape     Description BH is in a maze,the maze is a matrix,he wants to escape! Input The input cons ...

  3. 试图从数据库 ‘UFData_001_2003' 中提取的逻辑页 (1:10720) 属于对象 '0',而非对象 'syscolumns'

    数据库可以使用,可以备份,但对备份进行恢复时报错,使用sp_attach_db对两个物理文件进行连接时,报同样错误: 服务器: 消息 605,级别 21,状态 1,行 1 试图从数据库 ‘UFData ...

  4. error LNK2019: 无法解析的外部符号 __imp___CrtDbgReportW

    error LNK2005 and error LNK2019 error LNK2019: unresolved external symbol __imp___CrtDbgReportW refe ...

  5. OK335xS dhcpcd porting

    /********************************************************************** * OK335xS dhcpcd porting * 说 ...

  6. 如何让Vim显示dos下的^M符号

    /*********************************************************************** * 如何让Vim显示dos下的^M符号 * 声明: * ...

  7. 对于GLM的理解,与方差分析的对比

    最近遇到一个问题,如果因变量为一个连续变量(如胰岛素水平),主要考察的变量为分组变量(如正常血糖组,前糖尿病组,糖尿病组三组),现在的目的是想看调整多种变量(包括多个连续性变量和分类变量)后,胰岛素水 ...

  8. Darwin Streaming Server用vs2005编译运行过程

    原创. 一:编译 Darwin6.0.3版本是最新版本,也提供了.dsw文件.但是使用vs2005和vc6是编译不过的.所以,采用Darwin5.5.5版本.使用vc6打开WinNTSupport文件 ...

  9. Ejabberd源码解析前奏--管理

    一.ejabberdctl 使用ejabberdctl命令行管理脚本,你可以执行ejabberdctl命令和一些普通的ejabberd命令(后面会详细解说).这意味着你可以在一个本地或远程ejabbe ...

  10. [Everyday Mathematics]20150121

    设 $f\in C[0,1]$ 适合 $$\bex xf(y)+yf(x)\leq 1,\quad\forall\ x,y\in [0,1]. \eex$$ 试证: $$\bex \int_0^1 f ...