【题目描述 Description】

给一个 1 到 N 的排列{Ai},询问是否存在 1<=p1<p2<p3<p4<p5<…<pLen<=N(Len>=3),使得 Ap1,Ap2,Ap3,…ApLen 是一个等差序列。

【输入描述 Input Description】

输入的第一行包含一个整数 T,表示组数。

下接 T 组数据,每组第一行一个整数 N,每组第二行为一个 1 到 N 的排列, 数字两两之间用空格隔开。

【输出描述 Output Description】

对于每组数据,如果存在一个等差子序列,则输出一行“Y”,否则输出一 行“N”。

【样例输入 Sample Input】

2

3

1 3 2

3

3 2 1

【样例输出 Sample Output】

N

Y

【数据范围及提示 Data Size & Hint】

对于5%的数据,N<=100,对于30%的数据,N<=1000,对于100%的数据,N<=10000,T<=7

【解题思路】

首先声明,此题开始并没有什么思路,只找到一个O(N^2)的算法,然而这并没有什么卵用。

老师明示暗示我要我用线段树去做,我苦思冥想没有想出来,于是就抄了题解。

题解是这样的,枚举等差中项,用一颗线段树去维护那些值选了,那些值没选,构成一个01串之后求一个哈希值。

如果出现中项左边的hash值和右边的hash值不一样的情况,就说明存在等差数列,因为证明有一个值在中项左边已经选过,并且与其对应的值在中项右边还没有选。

插入O(logn),查询O(logn),扫一遍O(n)整体O(ologn);

代码略丑

#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
const int maxn=+, mod=;
int xp[maxn],a[maxn],n,v,t;
long long sumv[*maxn][];
//sumv[i][0] 代表从左边扫的值,sumv[i][1]代表从右边扫的值
void updata(int u,int l,int r){
int lc=u<<,rc=lc+;
if (l==r) sumv[u][]=sumv[u][]=;
else{
int mid=(l+r)/;
if (v<=mid) updata(lc,l,mid);
else updata(rc,mid+,r);
sumv[u][]=(sumv[rc][]+xp[r-mid]*sumv[lc][]%mod)%mod;
sumv[u][]=(sumv[lc][]+xp[mid-l+]*sumv[rc][]%mod)%mod;
}
} long long query(int node,int l,int r,int a,int b,int x){
int lc=node<<,rc=lc+;
if (l==a&&r==b) return sumv[node][x];
int mid=(l+r)/;
long long left=,right=;
if (mid<b) right=query(rc,mid+,r,max(mid+,a),b,x);
if (a<=mid) left=query(lc,l,mid,a,min(mid,b),x);
return (x?left+right*xp[max(,mid-a+)]%mod:right+left*xp[max(,b-mid)]%mod)%mod;
} int main(){
scanf("%d",&t);
for (int ii=;ii<t;ii++){
memset(sumv,,sizeof(sumv));
bool flag=;
scanf("%d",&n);
xp[]=;
for (int i=;i<=n+;i++) xp[i]=(xp[i-]<<)%mod;
for (int i=;i<n;i++)scanf("%d",&a[i]);
for (int i=;i<n;i++){
int x=a[i];
int len=min(x-,n-x);//长度取短之后比较
if (len) {
int t1=query(,,n,x+,x+len,);
int t2=query(,,n,x-len,x-,);
if (t1!=t2){
flag=;
break;
}
}
v=x;
updata(,,n);
}
if (flag) printf("Y\n");
else printf("N\n");
}
}

以上为堆状线段树,由于我一直喜欢用结构体,所以就又打了一个,然后发现内存时间代码复杂度都比堆要差,大概是因为要建树和结构体太大的缘故。线段树的种类的确要视题目而定。

 #include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
const int maxn=+,mod=;
struct tree{
int l,r,lch,rch;
long long sum;
}tr[maxn*][];
//tr[now][0]代表从左往右, tr[now][1]代表从右往左
int cnt,n,t,xp[maxn],a[maxn]; void build(int now,int l,int r){
cnt++;
tr[cnt][].l=tr[cnt][].l=l; tr[cnt][].r=tr[cnt][].r=r;
if (l==r) return;
tr[cnt][].lch=tr[cnt][].lch=cnt+;
int mid=(l+r)>>;
build(cnt+,l,mid);
tr[now][].rch=tr[now][].rch=cnt+;
build(cnt+,mid+,r);
} long long query(int now,int l,int r,int x){
long long t1=,t2=;
if (tr[now][x].l==l&&tr[now][x].r==r) return tr[now][x].sum;
int mid=(tr[now][x].l+tr[now][x].r)>>;
if (l<=mid) t1=query(tr[now][x].lch,l,min(r,mid),x)%mod;
if (r>mid) t2=query(tr[now][x].rch,max(mid+,l),r,x)%mod;
if (x==) return ((t1*xp[max(,r-mid)])%mod+t2)%mod;
if (x==) return ((t2*xp[max(mid-l+,)])%mod+t1)%mod;
//返回值的时候*xp的时候错过,乘的是数目,虽然我不知道我刚开始为什么写的不对
} void insert(int now,int x){
if (tr[now][].l==x&&tr[now][].r==x){
tr[now][].sum=tr[now][].sum=;
return;
}
int mid=(tr[now][].l+tr[now][].r)>>;
if (x<=mid) insert(tr[now][].lch,x);
if (x>=mid+) insert(tr[now][].rch,x);
int l=tr[now][].l,r=tr[now][].r;
tr[now][].sum=((tr[tr[now][].lch][].sum*xp[r-mid])%mod
+tr[tr[now][].rch][].sum)%mod;
tr[now][].sum=((tr[tr[now][].rch][].sum*xp[mid-l+])%mod
+tr[tr[now][].lch][].sum)%mod;
} int main(){
scanf("%d",&t);
while (t--){
memset(tr,,sizeof(tr));
cnt=;//开始忘记清零CE了
scanf("%d",&n);
xp[]=;
bool flag=;
for (int i=;i<=n+;i++) xp[i]=(xp[i-]<<)%mod;//预处理出所有二的幂
build(,,n);
for (int i=;i<n;i++) scanf("%d",&a[i]);
for (int i=;i<n;i++){
int x=a[i];
int len=min(a[i]-,n-a[i]);
if (len&&query(,x-len,x-,)!=query(,x+,x+len,)){
flag=;
break;
}
insert(,x);
}
if (flag) printf("Y\n");
else printf("N\n");
}
}

BZOJ 2124等差子序列 线段树&&hash的更多相关文章

  1. bzoj 2124 等差子序列 (线段树维护hash)

    2124: 等差子序列 Time Limit: 3 Sec  Memory Limit: 259 MBSubmit: 1922  Solved: 714[Submit][Status][Discuss ...

  2. BZOJ 2124: 等差子序列 线段树维护hash

    2124: 等差子序列 Description 给一个1到N的排列{Ai},询问是否存在1<=p1=3),使得Ap1,Ap2,Ap3,…ApLen是一个等差序列. Input 输入的第一行包含一 ...

  3. bzoj2124: 等差子序列线段树+hash

    bzoj2124: 等差子序列线段树+hash 链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2124 思路 找大于3的等差数列其实就是找等于 ...

  4. BZOJ2124:等差子序列(线段树,hash)

    Description 给一个1到N的排列{Ai},询问是否存在1<=p1<p2<p3<p4<p5<…<pLen<=N (Len>=3), 使得A ...

  5. CF452F等差子序列 & 线段树+hash查询区间是否为回文串

    记录一下一个新学的线段树基础trick(真就小学生trick呗) 给你一个1到n的排列,你需要判断该排列内部是否存在一个3个元素的子序列(可以不连续),使得这个子序列是等差序列.\(n\) <= ...

  6. BZOJ 2124: 等差子序列

    Sol 线段树+Hash. 首先暴力 等差子序列至少3项就可以了,就枚举中项,枚举公差就可以了,只需要一个数在中项前出现,另一个数在中项前没出现过就可以了.复杂度 \(O(n^2)\) 然后我想了一个 ...

  7. bzoj 2124 等差子序列 树状数组维护hash+回文串

    等差子序列 Time Limit: 3 Sec  Memory Limit: 259 MBSubmit: 1919  Solved: 713[Submit][Status][Discuss] Desc ...

  8. [bzoj2124]等差子序列——线段树+字符串哈希

    题目大意 给一个1到N的排列\(A_i\),询问是否存在\(p_i\),\(i>=3\),使得\(A_{p_1}, A_{p_2}, ... ,A_{p_len}\)是一个等差序列. 题解 显然 ...

  9. bzoj 3207 可持久化线段树+hash

    这道题要看出来这个做法还是比较容易说一下细节 1.因为要用hash的区间值域来建树,而hash为了不冲突要开的很大,所以值域就会比较的大,不过这道题好的一点是没有修改,所以直接离散一下就会小很多 2. ...

随机推荐

  1. 检测 NSObject 对象持有的强指针

    在上一篇文章中介绍了 FBRetainCycleDetector 的基本工作原理,这一篇文章中我们开始分析它是如何从每一个对象中获得它持有的强指针的. 如果没有看第一篇文章这里还是最好看一下,了解一下 ...

  2. android studio的里的 content_XXX_xml问题

    遇到这个问题就是androidStudio的版本问题,androidStudio会出现这个问题是在androidStudio1.4以上版本当遇到这个问题的时候建Activity的时候选择EmptyAc ...

  3. 深入理解计算机系统第二版习题解答CSAPP 2.13

    从20世纪70年代末到80年代末,Digital Equipment的VAX计算机是一种非常流行的机型.它没有布尔运算AND和OR指令,只有bis(位设置)和bic(位清除)这两种指令.两种指令的输入 ...

  4. JS常用正则(转)

    作者:zxin出处:http://zxin.cnblogs.com/ 一.校验数字的表达式 1 数字:^[0-9]*$ 2 n位的数字:^\d{n}$ 3 至少n位的数字:^\d{n,}$ 4 m-n ...

  5. gvim设置字体和隐藏菜单栏工具栏

    liunx下面设置字体 set guifont=Monaco\ 注意空格的位置,其他写法不认哦! Windows下面设置 set guifont=Monaco:h 隐藏菜单栏 set guioptio ...

  6. 【转载】为什么不建议<=3G的情况下使用CMS GC

    之前曾经有讲过在heap size<=3G的情况下完全不要考虑CMS GC,在heap size>3G的情况下也优先选择ParallelOldGC,而不是CMS GC,只有在暂停时间无法接 ...

  7. C#中调用存储过程

    [csharp] view plain copy print? string strsql = "Data Source=192.168.24.53;Initial Catalog=JF_C ...

  8. Decorator设计模式浅谈

    装饰类跟基础组件都实现了目标接口,是为了匹配正确的类型.Java中的IO设计就是典型的Decorator设计模式. 装饰模式产生的初衷是, 对默认实现类的行为进行扩展. 由于装饰类的构造器接受的参数是 ...

  9. C#集合之Hashtable

    Hashtable是一个键值对集合,其泛型版本是Dictionary<K, V>,下面说下常用的一些方法; 1.Add(),向Hashtable添加元素,需要注意的是因为它是键值对集合,所 ...

  10. UIButton 按钮文字左对齐

    btn.contentHorizontalAlignment = UIControlContentHorizontalAlignmentLeft; btn.titleEdgeInsets = UIEd ...