poj 3373 Changing Digits (DFS + 记忆化剪枝+鸽巢原理思想)
http://poj.org/problem?id=3373
Time Limit: 3000MS | Memory Limit: 65536K | |
Total Submissions: 2719 | Accepted: 863 |
Description
Given two positive integers n and k, you are asked to generate a new integer, say m, by changing some (maybe none) digits of n, such that the following properties holds:
- m contains no leading zeros and has the same length as n (We consider zero itself a one-digit integer without leading zeros.)
- m is divisible by k
- among all numbers satisfying properties 1 and 2, m would be the one with least number of digits different from n
- among all numbers satisfying properties 1, 2 and 3, m would be the smallest one
Input
There are multiple test cases for the input. Each test case consists of two lines, which contains n(1≤n≤10100) and k(1≤k≤104, k≤n) for each line. Both n and k will not contain leading zeros.
Output
Output one line for each test case containing the desired number m.
Sample Input
2
2
619103
3219
Sample Output
2
119103
Source
#include<iostream>
#include<stdio.h>
#include<string.h> using namespace std; #define N 110
#define NN 10010 char str[N];
int mod[N][N],ans[N],num[N],f[N][NN];
int k,len; int dfs(int pos,int m,int cnt)
{
int i,j;
if(m==) return ; //当余数为0时,表示已经找到,返回1
if(pos<||cnt<=f[pos][m]||cnt==) return ; //从前面最高位开始,从小到大遍历,保证得到的ans最小
for(i=pos;i>=;i--)
{
for(j=;j<num[i];j++)
{
if(i==len-&&j==) continue;
ans[i] = j;
int res = (m-(mod[i][num[i]]-mod[i][j])+k)%k; //注意+k防止出现负数
if(dfs(i-,res,cnt-)) return ; //进入下一层搜索
}
ans[i] = num[i]; //还原ans
} //从后面最低位开始,从小到大遍历,保证得到的ans最小
for(i=;i<=pos;i++)
{
for(j=num[i]+;j<;j++)
{
if(i==len-&&j==) continue;
ans[i] = j;
int res = (m+(mod[i][j]-mod[i][num[i]]))%k;
if(dfs(i-,res,cnt-)) return ;
}
ans[i] = num[i]; //还原
}
f[pos][m] = cnt;
// cout<<pos<<" "<<m<<" "<<cnt<<endl;
return ;
} int main()
{
while(~scanf("%s",str))
{
int i,j;
scanf("%d",&k);
memset(f,,sizeof(int)*(k+));
len = strlen(str);
for(i=;i<;i++) mod[][i]=i%k;
for(i=;i<len;i++)
{
for(j=;j<;j++)
{
mod[i][j] = (mod[i-][j]*)%k; //mod[i][j]: j*(10^i) 对 K 的取余 值
}
}
int m=;
for(i=;i<len;i++)
{
ans[i]=num[i]=str[len--i]-'';
m = (m + mod[i][ans[i]])%k; //获得str除以k的余数m
}
for(i=;i<=len;i++) if(dfs(len-,m,i)) break;
for(i=len-;i>=;i--) printf("%d",ans[i]);
putchar();
}
return ;
}
poj 3373 Changing Digits (DFS + 记忆化剪枝+鸽巢原理思想)的更多相关文章
- POJ 3373 Changing Digits 好蛋疼的DP
一開始写的高位往低位递推,发现这样有些时候保证不了第四条要求.于是又開始写高位往低位的记忆化搜索,又发现传參什么的蛋疼的要死.然后又发现高位開始的记忆化搜索就是从低位往高位的递推呀,遂过之. dp[i ...
- POJ 3373 Changing Digits
题目大意: 给出一个数n,求m,使得m的长度和n相等.能被k整除.有多个数符合条件输出与n在每位数字上改变次数最小的.改变次数同样的输出大小最小的. 共同拥有两种解法:DP解法,记忆化搜索的算法. ...
- POJ 3373 Changing Digits 记忆化搜索
这道题我是看了别人的题解才做出来的.题意和题解分析见原文http://blog.csdn.net/lyy289065406/article/details/6698787 这里写一下自己对题目的理解. ...
- POJ 3373 Changing Digits(DP)
题目链接 记录路径的DP,看的别人的思路.自己写的也不好,时间居然2000+,中间的取余可以打个表,优化一下. 写的各种错,导致wa很多次,写了一下午,自己构造数据,终于发现了最后一个bug. dp[ ...
- POJ 1191 棋盘分割 【DFS记忆化搜索经典】
题目传送门:http://poj.org/problem?id=1191 棋盘分割 Time Limit: 1000MS Memory Limit: 10000K Total Submission ...
- poj 3249(bfs+dp或者记忆化搜索)
题目链接:http://poj.org/problem?id=3249 思路:dp[i]表示到点i的最大收益,初始化为-inf,然后从入度为0点开始bfs就可以了,一开始一直TLE,然后优化了好久才4 ...
- 不要62 hdu 2089 dfs记忆化搜索
题目:http://acm.hdu.edu.cn/showproblem.php?pid=2089 题意: 给你两个数作为一个闭区间的端点,求出该区间中不包含数字4和62的数的个数 思路: 数位dp中 ...
- dfs+记忆化搜索,求任意两点之间的最长路径
C.Coolest Ski Route 题意:n个点,m条边组成的有向图,求任意两点之间的最长路径 dfs记忆化搜索 #include<iostream> #include<stri ...
- POJ 3370. Halloween treats 抽屉原理 / 鸽巢原理
Halloween treats Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 7644 Accepted: 2798 ...
随机推荐
- c/c++指针基础使用
#include <iostream> #include <string> using namespace std; int main() { "; "; ...
- CSS——选择器
css选择器 css选择器可分为:标签(元素)选择器,ID选择器,类选择器,属性选择器,后代选择器,子代选择器,相邻兄弟选择器和兄弟选择器.... 标签选择器: //E{attr:value;attr ...
- 深入理解计算机系统第二版习题解答CSAPP 2.18
将32位补码表示的数转换为10进制数. 32位补码 十进制 0x1b8 0x14 0xFFFFFE58 -424 0xFFFFFE74 -396 0x44 0xFFFFFEC8 -312 0x10 0 ...
- Centos7 安装mongodb3.2.9 过程
1:wget --no-check-certificate https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-amazon-3.2.9.tg ...
- WPF_X命名空间
x名称空间映射的是http://schemas.microsoft.com/winfx/2006/xaml,也称为"XAML名称空间"
- 关于Eclipse Modeling Framework 实现模型驱动开发,第一部分
======================================EMF第二篇文章========================= 用 Eclipse Modeling Framework ...
- [记录] javascript 对象中使用setTimeout
参考:Javascript对象中关于setTimeout和setInterval的this介绍 使用最后一个方法终于弄好了,简直了,在对象中使用setTimeout原来是这样的 做的是分钟倒计时,倒数 ...
- SqlBulkCopy 数据批量操作使用的类
private void SqlBulkCopyByDataTable(string connectionString,string TableName,DataTable dt) { using ( ...
- Android Metro风格的Launcher开发系列第一篇
前言:从毕业到现在已经三年多了,回忆一下这三年基本上没有写过博客,总是觉得忙,没时间写,也觉得写博客没什么大用.但是看到很多大牛们都在写博客,分享自己的东西,所以嘛本着向大牛看齐,分享第一,记录第二的 ...
- ###Linux基础 - 2
点击查看Evernote原文. #@author: gr #@date: 2014-10-13 #@email: forgerui@gmail.com 一.Linux基础命令2 mount: 挂载U盘 ...