前面,我们已经打下了很多关于HBase的理论基础,今天,我们主要聊聊在实际开发使用HBase中,需要关注的一些最佳实践经验。

1.Schema设计七大原则

1)每个region的大小应该控制在10G到50G之间;

2)一个表最好保持在 50到100个 region的规模;

3)每个cell最大不应该超过10MB,如果超过,应该有些考虑业务拆分,如果实在无法拆分,那就只能使用mob;

4)跟传统的关系型数据库不同,一个HBase的表中列族最多不超过3个,列族中的列可以动态添加的,不要设计过多列族;

5)列族名必须尽量短,因为我们知道在存储的时候,每个keyvalue都会包含列族名;

6)如果一个表存在一个以上的列族,那么必须要注意,不同列族之间行数相差不要太大。 例如列族A有10万行,而列族B有1亿行,那么rowkey就有1亿行,而region是按照行键进行切分的,因此列族A可能会被打散为很多很多小region,这会导致在扫描列族A时会引发较多IO,效率低下。

7)列族可以设置TTL时间,HBase在超过设定时间后,会自动删除数据。

设置方法有两种:

# 建表时设置,TTL单位为秒,此例中列簇'f1'的数据保留1天(86400秒)

hbase(main):002:0>create 'table', {NAME => 'f1', TTL => 86400}

# 通过修改表设置

hbase(main):002:0>alter 'table', {NAME => 'f1', TTL => 86400}

这里需要注意,一旦超过设定时间后,该数据就无法读取了,但是,真正的过期数据删除,是发生在major compaction时。

2.RowKey设计三大策略

HBase作为一个分布式存储数据库,虽然扩容非常容易,但是,对于“热点”问题,还是非常头疼的。

所谓“热点”问题(HotSpotting),就是请求(读或者写)短时间内落在了集中的个别region上,导致了该region所在机器的负载急剧上升,超过了单点实例的承受能力,从而引起性能下降或者不可用。

要解决这个问题,就需要设计RowKey时,使得数据尽量往多个region上去写。

举个例子:

假如region按照26个字母分成26个,那么同时写入m开头的rowkey的记录都会同时写入同一个region

比如m001,m002,m003,m004,m005。

因此,RowKey的设计非常关键。常见的设计策略有这么几种。

1)salting

salting策略就是将生成随机数放在行键的开头作为前缀,使得每个行键有随机的字典序。

对上面的案例进行优化,我们采用了salting策略,插入前给每个rowkey生成一个随机的字母,变成了

am001,zm002,nm003,qm004,lm005

这样就能同时往5个region里面写入了,成功打散。

副作用:由于前缀生成是随机的,因此如果想要按照字典序查询这些行,则需要做更多的事情。从这个角度上看,salting增加了写操作的吞吐量,却也增大了读操作的开销。

2)Hashing

Hashing策略也是一种特殊的salting,是用一个单向的 hash 来取代随机指派前缀。

这样能使一个给定rowkey的行在“salted”时有相同的前缀,因此,这样既可以分散RegionServer间的负载的,同时也允许在读操作时能够预测这个前缀值是什么。确定性hash( deterministic hash )可以让客户端重建完整的行键,然后就可以像正常一样用Get方法查询确定的行。

3)reverse key

第三种预防hotspotting的方法是反转一段固定长度或者可数的键,让变化最多的某个位置放在rowkey的第一位,

副作用:对于Get操作没有影响,但是不利于Scan操作进行范围查询,因为数据在原RowKey上的顺序已经被打乱。

3.预分区

在 HBase核心特性—region split 中,我们知道已经提到过关于预分区。

主要原因是当一张表被首次创建时,只会分配一个region给这个表。因此,在刚刚开始时,所有读写请求都会落在这个region所在的region server上,而不管你整个集群有多少个region server。不能充分地利用集群的分布式特性。

因此,预分区主要也是解决“热点”问题。

最为常见的建表语句为:

create ‘tb’,{NAME => ‘f1’,COMPRESSION => ‘snappy’ }, { NUMREGIONS => 50, SPLITALGO => ‘HexStringSplit’ }

  • NUMREGIONS 为 region的个数,一般按照每个region 8-10GB左右来计算region数量,如果集群规模非常大,那么region数量可以适当取大一些
  • SPLITALGO 为 rowkey分割的算法,Hbase自带了三种pre-split的算法,分别是 HexStringSplit、DecimalStringSplit 和 UniformSplit。

各种Split算法适用场景:

  • HexStringSplit: rowkey是十六进制的字符串作为前缀的
  • DecimalStringSplit: rowkey是10进制数字字符串作为前缀的
  • UniformSplit: rowkey前缀完全随机

4.读性能优化

前面主要讲一些设计方面的优化点。

那如果在HBase的使用过程中,发现查询较慢,那么就需要根据具体情况,分析查询慢的原因,并采取相应的策略。

看到这里了,原创不易,点个关注、点个赞吧,你最好看了~

知识碎片重新梳理,构建Java知识图谱:https://github.com/saigu/JavaKnowledgeGraph(历史文章查阅非常方便)

扫码关注我的公众号“阿丸笔记”,第一时间获取最新更新。同时可以免费获取海量Java技术栈电子书、各个大厂面试题。

 

「从零单排HBase 06」你必须知道的HBase最佳实践的更多相关文章

  1. 「从零单排canal 06」 instance模块源码解析

    基于1.1.5-alpha版本,具体源码笔记可以参考我的github:https://github.com/saigu/JavaKnowledgeGraph/tree/master/code_read ...

  2. 「从零单排canal 04」 启动模块deployer源码解析

    基于1.1.5-alpha版本,具体源码笔记可以参考我的github:https://github.com/saigu/JavaKnowledgeGraph/tree/master/code_read ...

  3. 「从零单排canal 05」 server模块源码解析

    基于1.1.5-alpha版本,具体源码笔记可以参考我的github:https://github.com/saigu/JavaKnowledgeGraph/tree/master/code_read ...

  4. 「从零单排canal 07」 parser模块源码解析

    基于1.1.5-alpha版本,具体源码笔记可以参考我的github:https://github.com/saigu/JavaKnowledgeGraph/tree/master/code_read ...

  5. 「从零单排canal 03」 canal源码分析大纲

    在前面两篇中,我们从基本概念理解了canal是一个什么项目,能应用于什么场景,然后通过一个demo体验,有了基本的体感和认识. 从这一篇开始,我们将从源码入手,深入学习canal的实现方式.了解can ...

  6. 「从零单排canal 01」 canal 10分钟入门(基于1.1.4版本)

    1.简介 canal [kə'næl],译意为水道/管道/沟渠,主要用途是基于 MySQL 数据库增量日志解析,提供增量数据 订阅 和 消费.应该是阿里云DTS(Data Transfer Servi ...

  7. 「从零单排canal 02」canal集群版 + admin控制台 最新搭建姿势(基于1.1.4版本)

    canal [kə'næl],译意为水道/管道/沟渠,主要用途是基于 MySQL 数据库增量日志解析,提供增量数据 订阅 和 消费.应该是阿里云DTS(Data Transfer Service)的开 ...

  8. 《HBase在滴滴出行的应用场景和最佳实践》

    HBase在滴滴出行的应用场景和最佳实践   背景 对接业务类型 HBase是建立在Hadoop生态之上的Database,源生对离线任务支持友好,又因为LSM树是一个优秀的高吞吐数据库结构,所以同时 ...

  9. 「从零单排HBase 12」HBase二级索引Phoenix使用与最佳实践

    Phoenix是构建在HBase上的一个SQL层,能让我们用标准的JDBC APIs对HBase数据进行增删改查,构建二级索引.当然,开源产品嘛,自然需要注意“避坑”啦,阿丸会把使用方式和最佳实践都告 ...

随机推荐

  1. inode和block

    1:磁盘分区并被格式化为ext4 后,文件系统会生成一定数量的 inode 和block 2:   inode 称为索引节点,他的作用是存放文件的属性信息以及作为文件的索引. 3:ext3和ext4文 ...

  2. ACG记录整理

    资料来源 日文维基百科 bangumi番组计划 中文维基百科 百度百科 豆瓣电影 资料类型 テレビアニメ‎ OVA‎ アニメ映画‎ Webアニメ‎ 内容说明 番名,带超链接介绍,尽量选用国内网站介绍, ...

  3. EmguCV从位图(Bitmap)加载Image<Gray,byte>速度慢的问题

    先说背景.最近在用C#+EmguCV(其实就是用P/Invoke封闭了OpecCV,与OpenCVDotNet差不多) 做一个视频的东西.视频是由摄像头采集回来的1f/s,2048X1000大小,其实 ...

  4. Python基本了解

    1. 计算机基础知识 CPU : 人类的大脑,运算处理问题 内存 : 临时储存数据,断点数据就会消失,存储数据快 硬盘 : 永久存储各种数据,相对于内存存储速度慢 操作系统 : 本质上是一个软件,用于 ...

  5. java String、StringBuilder

    Java中的String和StringBuilder类: 1.String对象是不可变的.每一个看起来修改了String值的方法,实际上都是创建了全新的String对象.代码示例如下: String ...

  6. 《内蒙古自治区第十二届大学生程序设计竞赛试题_D: 正品的概率》

    问题 D: 正品的概率 内存限制:128 MB时间限制:1 S标准输入输出 题目类型:传统评测方式:文本比较上传者:外部导入 提交:36通过:7 返回比赛提交提交记录 题目描述 袋中有m枚正品硬币,n ...

  7. labview学习——生产者/消费者(数据)(事件)

    其主要的模型: 主要从以下几个方面理解: 1.可重入性 正常的labview是多线程设计语言,而我们在执行VI时的规则是通过VI的命名来分别调用实现的. 打开VI的Highlight调试工具,可以看出 ...

  8. vue-cli 项目结构介绍

    感谢:https://www.jianshu.com/p/7006a663fb9f 总体框架 一个vue-cli的项目结构如下,其中src文件夹是需要掌握的,所以本文也重点讲解其中的文件,至于其他相关 ...

  9. mybatis 添加后获得该新增数据自动生成的 id

    // useGeneratedKeys默认值为false,keyProperty的值对应的是User类中的主键字段名 // mybatis 写法如下 <insert id="inser ...

  10. html一个页面链接携带参数跳转另一个页面基于vue2.0的element框架

    来给生活比个耶! 1.按钮 <el-button @click="albumList(scope.row.id)" size="mini" type=&q ...