背景

本章的内容是为了实现在驱动中的开发,通过调用有关的api来寻找设备树节点熟悉,从而达到使用设备树进行驱动开发的目的。

参考:Linux内核 设备树操作常用API

Linux设备树语法详解一文中介绍了设备树的语法,这里主要

"include/of.h"介绍内核中提供的操作设备树的API

drivers/of.h是内核源码中关于设备树的内部实现。

device_node

内核中用下面的这个结构描述设备树中的一个节点,后面的API都需要一个device_node对象作为参数传入。

//include/of.h
46 struct device_node {
47 const char *name;
48 const char *type;
49 phandle phandle;
50 const char *full_name;
51
52 struct property *properties;
53 struct property *deadprops; /* removed properties */
54 struct device_node *parent;
55 struct device_node *child;
56 struct device_node *sibling;
57 struct device_node *next; /* next device of same type */
58 struct device_node *allnext; /* next in list of all nodes */
59 struct proc_dir_entry *pde; /* this node's proc directory */
60 struct kref kref;
61 unsigned long _flags;
62 void *data;
63 #if defined(CONFIG_SPARC)
64 const char *path_component_name;
65 unsigned int unique_id;
66 struct of_irq_controller *irq_trans;
67 #endif
68 };

struct device_node

--47-->节点名

--48-->设备类型

--50-->全路径节点名

--54-->父节点指针

--55-->子节点指针

查找节点API

/**
* of_find_compatible_node - 通过compatible属性查找指定节点
* @from - 指向开始路径的节点,如果为NULL,则从根节点开始
* @type - device_type设备类型,可以为NULL
* @compat - 指向节点的compatible属性的值(字符串)的首地址
* 成功:得到节点的首地址;失败:NULL
*/
struct device_node *of_find_compatible_node(struct device_node *from,const char *type, const char *compat);
/**
* of_find_matching_node - 通过compatible属性查找指定节点
* @from - 指向开始路径的节点,如果为NULL,则从根节点开始
* @matches - 指向设备ID表,注意ID表必须以NULL结束
* 范例: const struct of_device_id mydemo_of_match[] = {
{ .compatible = "fs4412,mydemo", },
{}
};
* 成功:得到节点的首地址;失败:NULL
*/
struct device_node *of_find_matching_node(struct device_node *from,const struct of_device_id *matches);
/**
* of_find_node_by_path - 通过路径查找指定节点
* @path - 带全路径的节点名,也可以是节点的别名
* 成功:得到节点的首地址;失败:NULL
*/
struct device_node *of_find_node_by_path(const char *path);
/**
* of_find_node_by_name - 通过节点名查找指定节点
* @from - 开始查找节点,如果为NULL,则从根节点开始
* @name- 节点名
* 成功:得到节点的首地址;失败:NULL
*/
struct device_node *of_find_node_by_name(struct device_node *from,const char *name);

提取通用属性API

/**
* of_find_property - 提取指定属性的值
* @np - 设备节点指针
* @name - 属性名称
* @lenp - 属性值的字节数
* 成功:属性值的首地址;失败:NULL
*/
struct property *of_find_property(const struct device_node *np, const char *name, int *lenp);
/**
* of_property_count_elems_of_size - 得到属性值中数据的数量
* @np - 设备节点指针
* @propname - 属性名称
* @elem_size - 每个数据的单位(字节数)
* 成功:属性值的数据个数;失败:负数,绝对值是错误码
*/
int of_property_count_elems_of_size(const struct device_node *np,const char *propname, int elem_size);
/**
* of_property_read_u32_index - 得到属性值中指定标号的32位数据值
* @np - 设备节点指针
* @propname - 属性名称
* @index - 属性值中指定数据的标号
* @out_value - 输出参数,得到指定数据的值
* 成功:0;失败:负数,绝对值是错误码
*/
int of_property_read_u32_index(const struct device_node *np, const char *propname, u32 index, u32 *out_value);
/**
* of_property_read_string - 提取字符串(属性值)
* @np - 设备节点指针
* @propname - 属性名称
* @out_string - 输出参数,指向字符串(属性值)
* 成功:0;失败:负数,绝对值是错误码
*/
int of_property_read_string(struct device_node *np, const char *propname, const char **out_string);

提取addr属性API

/**
* of_n_addr_cells - 提取默认属性“#address-cells”的值
* @np - 设备节点指针
* 成功:地址的数量;失败:负数,绝对值是错误码
*/
int of_n_addr_cells(struct device_node *np);
/**
* of_n_size_cells - 提取默认属性“#size-cells”的值
* @np - 设备节点指针
* 成功:地址长度的数量;失败:负数,绝对值是错误码
*/
int of_n_size_cells(struct device_node *np);
/**
* of_get_address - 提取I/O口地址
* @np - 设备节点指针
* @index - 地址的标号
* @size - 输出参数,I/O口地址的长度
* @flags - 输出参数,类型(IORESOURCE_IO、IORESOURCE_MEM)
* 成功:I/O口地址的首地址;失败:NULL
*/
__be32 *of_get_address(struct device_node *dev, int index, u64 *size, unsigned int *flags);
/**
* of_translate_address - 从设备树中提取I/O口地址转换成物理地址
* @np - 设备节点指针
* @in_addr - 设备树提取的I/O地址
* 成功:物理地址;失败:OF_BAD_ADDR
*/
u64 of_translate_address(struct device_node *dev, const __be32 *in_addr);
/**
* of_iomap - 提取I/O口地址并映射成虚拟地址
* @np - 设备节点指针
* @index - I/O地址的标号
* 成功:映射好虚拟地址;失败:NULL
*/
void __iomem *of_iomap(struct device_node *np, int index);
/**
* 功能:提取I/O口地址并申请I/O资源及映射成虚拟地址
* @np - 设备节点指针
* @index - I/O地址的标号
* @name - 设备名,申请I/O地址时使用
* 成功:映射好虚拟地址;失败:NULL
*/
void __iomem *of_io_request_and_map(struct device_node *np, int index, const char *name);

提取resource属性API

/**
* of_address_to_resource - 从设备树中提取资源resource(I/O地址)
* @np - 设备节点指针
* @index - I/O地址资源的标号
* @r - 输出参数,指向资源resource(I/O地址)
* 成功:0;失败:负数,绝对值是错误码
*/
int of_address_to_resource(struct device_node *dev, int index, struct resource *r);

提取GPIO属性API

/**
* include/of_gpio.h
* of_get_named_gpio - 从设备树中提取gpio口
* @np - 设备节点指针
* @propname - 属性名
* @index - gpio口引脚标号
* 成功:得到GPIO口编号;失败:负数,绝对值是错误码
*/
int of_get_named_gpio(struct device_node *np, const char *propname, int index);

提取irq属性API

/**
* of_irq_count从设备树中提取中断的数量
* @np - 设备节点指针
* 成功:大于等于0,实际中断数量,0则表示没有中断
*/
int of_irq_count(struct device_node *dev);
/**
* of_irq_get - 从设备树中提取中断号
* @np - 设备节点指针
* @index - 要提取的中断号的标号
* 成功:中断号;失败:负数,其绝对值是错误码
int of_irq_get(struct device_node *dev, int index);

提取其他属性API

/**
* of_get_mac_address - 从设备树中提取MAC地址
* @np - 设备节点指针
* @成功:MAC(6字节)的首地址;失败:NULL
*/
void *of_get_mac_address(struct device_node *np);

设备树DTS 学习:3-常用的DTS 函数的更多相关文章

  1. 05 python学习笔记-常用内置函数(五)

    1.sorted() 函数对所有可迭代的对象进行排序(默认升序)操作 sort 与 sorted 区别: sort 是应用在 list 上的方法,sorted 可以对所有可迭代的对象进行排序操作. l ...

  2. Python学习笔记-常用内置函数

    输出:print() 功能:输出打印 语法:print(*objects, sep=' ', end='\n', file=sys.stdout) 参数:objects----复数,表示可以一次输出多 ...

  3. 设备树(device tree)学习笔记

    作者信息 作者:彭东林 邮箱:pengdonglin137@163.com 1.反编译设备树 在设备树学习的时候,如果可以看到最终生成的设备树的内容,对于我们学习设备树以及分析问题有很大帮助.这里我们 ...

  4. 设备树(device tree)学习笔记【转】

    转自:https://www.cnblogs.com/pengdonglin137/p/4495056.html 阅读目录(Content) 1.反编译设备树 2.分析工具fdtdump 3.Linu ...

  5. Linux设备树学习

    1.概念 设备树用于实现驱动代码与设备信息相分离.驱动代码只负责处理驱动的逻辑而关于设备的具体信息存放到设备树文件中.(dts文件,编译后为dtb文件).一个dts文件对应一个ARM的machine, ...

  6. Linux设备树语法详解

    概念 Linux内核从3.x开始引入设备树的概念,用于实现驱动代码与设备信息相分离.在设备树出现以前,所有关于设备的具体信息都要写在驱动里,一旦外围设备变化,驱动代码就要重写.引入了设备树之后,驱动代 ...

  7. Linux设备树语法详解【转】

    转自:http://www.cnblogs.com/xiaojiang1025/p/6131381.html 概念 Linux内核从3.x开始引入设备树的概念,用于实现驱动代码与设备信息相分离.在设备 ...

  8. 【ARM-Linux开发】内核3.x版本之后设备树机制

    内核3.x版本之后设备树机制 Based  on  Linux  3.10.24  source  code  参考/documentation/devicetree/Booting-without- ...

  9. 【linux】驱动-8-一文解决设备树

    目录 前言 8. Linux设备树 8.1 设备树简介 8.2 设备树框架 8.2.1 设备树格式 8.2.1.1 DTS 文件布局 8.2.1.2 node 格式 8.2.1.3 propertie ...

  10. imx6设备树pinctrl解析【转】

    转自:http://blog.csdn.net/michaelcao1980/article/details/50730421 版权声明:本文为博主原创文章,未经博主允许不得转载. 最近在移植linu ...

随机推荐

  1. Codeforces Round #592 (Div. 2)G(模拟)

    #define HAVE_STRUCT_TIMESPEC#include<bits/stdc++.h>using namespace std;long long a[1000007],b[ ...

  2. Solidity基本数据结构

    任何一个智能合约都会在最开头表示使用的编译器版本 如:prama solidity ^0.4.0 数组: //静态数组 大小长度确定 uint[2] fixedArray; //动态数组,可以随意添加 ...

  3. 国外电商网站snapdeal爬取流程

    首页爬取 1.首页获取各个目录的url 如所有优惠all_offers的其中urlhttps://www.snapdeal.com/products/men-apparel-shirts?sort=p ...

  4. python - 关于json和pickle两个序列化模块的区别

    传送门 https://stackoverflow.com/a/20980488/5955399 区别 json:用于字符串(unicode text)和python基本数据类型间进行转换.优点:跨语 ...

  5. 设计模式01 创建型模式 - 建造者模式(Build Pattern)

    参考 1. Builder Design Pattern | Youtube 2. 建造者模式(Builder和Director)| 博客园 3. 深入理解Builder模式 | 简书 建造者模式(B ...

  6. Spring中解决循环依赖报错的问题

    什么是循环依赖 当一个ClassA依赖于ClassB,然后ClassB又反过来依赖ClassA,这就形成了一个循环依赖: ClassA -> ClassB -> ClassA 原创声明 本 ...

  7. SpringMVC笔记三

    课程安排: 第一天:springmvc的基础知识 什么是springmvc? springmvc框架原理(掌握) 前端控制器.处理器映射器.处理器适配器.视图解析器 springmvc入门程序 目的: ...

  8. leetcode刷题-- 2. 排序(待更新)

    排序 参考五分钟学算法 复杂度比较 时间复杂度 O(n2) 各种简单的排序:直接插入.直接选择.冒泡 O(nlog2n) 快速排序.堆排序.归并排序 O(n1+\(\lambda\)),希尔排序 线性 ...

  9. 吴裕雄--天生自然PythonDjangoWeb企业开发:Django文档阅读简介

    Django是基于MVC模式的框架,虽然也被称为“MTV”的模式,但是大同小异.对我们来说,需要了解的是无论是MVC模式还是MTV模式,甚至是其他的什么模式,都是为了解耦.把一个软件系统划分为一层一层 ...

  10. Unity初步 基本拼图实现

    using System.Collections; using System.Collections.Generic; using UnityEngine; using UnityEngine.UI; ...