BFS与DFS常考算法整理

  • Preface

BFS(Breath-First Search,广度优先搜索)与DFS(Depth-First Search,深度优先搜索)是两种针对树与图数据结构的遍历或搜索算法,在树与图相关算法的考察中是非常常见的两种解题思路。

Definition of DFS and BFS

DFS的wikipedia定义:

Depth-first search (DFS) is an algorithm for traversing or searching tree or graph data structures. The algorithm starts at the root node (selecting some arbitrary node as the root node in the case of a graph) and explores as far as possible along each branch before backtracking.

BFS的wikipedia定义:

Breadth-first search (BFS) is an algorithm for traversing or searching tree or graph data structures. It starts at the tree root (or some arbitrary node of a graph, sometimes referred to as a ‘search key’[1]), and explores all of the neighbor nodes at the present depth prior to moving on to the nodes at the next depth level.

It uses the opposite strategy as depth-first search, which instead explores the highest-depth nodes first before being forced to backtrack and expand shallower nodes.

So obviously, as their name suggest, DFS focuses on ‘depth’ when searching or traversing while BFS focuses on ‘breath’.

By the way, because of DFS’s feature, it’s easy to relate it with ‘Backtracking’ algorithm as the wiki definition mentions. The relationship between DFS and backtracking is well explained by Reed Copsey on StackOverflow:

Backtracking is a more general purpose algorithm.

Depth-First search is a specific form of backtracking related to searching tree structures. From Wikipedia:

One starts at the root (selecting some node as the root in the graph case) and explores as far as possible along each branch before backtracking.

It uses backtracking as part of its means of working with a tree, but is limited to a tree structure.

Backtracking, though, can be used on any type of structure where portions of the domain can be eliminated - whether or not it is a logical tree. The Wiki example uses a chessboard and a specific problem - you can look at a specific move, and eliminate it, then backtrack to the next possible move, eliminate it, etc.

How to Implement DFS and BFS

DFS

In tree structure, DFS means we always start from a root node and try to reach the leaf node as direct as possible before we have to backtrack.

Order in which the nodes are visited

In graph, DFS means we start from a random assigned node in the graph, and explores as far as possible along the branch before we have to backtrack.

So the key points for DFS are:

- How to explore as far as possible?

- How to backtrack?

How to explore as far as possible

Normally, for tree node, it would have left child or right child, so we would continuously go on exploring current node’s child node until we encounter a null node, then we go back to last node. Repeat above procedures until all nodes have been visited.

for graph node, we do the similar exploration: explore as further as possible according to the representation of graph (adjacency list, adjacency matrix or incidence matrix) until we find no more node that hasn’t been visited and connected with current node, then we go back to last node. Repeat above procedures until all nodes have been visited.

How to backtrack/go back?

‘Go back’ generally can be realized using data structure ——stack—— or by recursion. And if we use stack, it means we would need to push each node we visited in the process of exploring each branch, and pop when we can’t explore further starting from current node.

BFS

In tree structure, BFS means we always start from a root node and try to all the other nodes in the same breath before we further try exploring nodes at next depth level. (The same explanation for graph)

Order in which the nodes are visited

So the key points for BFS are:

  • How to explore all nodes of same depth level?

How to explore all nodes of same depth level?

We can use a queue to do this: Starting from root node of a tree (Or a random node in a graph), we add visit all nodes connected with the starting node and add them to the queue. Then, we poll node from queue one by one and repeat above procedures until all nodes have been visited.

Typical Leetcode Prbolems

DFS

Path Sum II

LC113

Given a binary tree and a sum, find all root-to-leaf paths where each path’s sum equals the given sum.

Note: A leaf is a node with no children.

Example:

Given the below binary tree and sum = 22,

      5
/ \
4 8
/ / \
11 13 4
/ \ / \
7 2 5 1

Return:

[
[5,4,11,2],
[5,8,4,5]
]
  • My Answer
package medium2;

import java.util.ArrayList;
import java.util.List; /**
* @author Tom Qian
* @email tomqianmaple@outlook.com
* @github https://github.com/bluemapleman
* @date 2018年6月7日
*/
public class PathSumII
{
// DFS: make use of recursion to backtrack
public List<List<Integer>> pathSum(TreeNode root, int sum) {
List<List<Integer>> ans=new ArrayList<List<Integer>>();
if(root==null)
return ans; int goal=sum-root.val;
if(goal==0) {
if(root.left==null && root.right==null) {
List<Integer> tempList=new ArrayList<>();
tempList.add(root.val);
ans.add(tempList);
return ans;
}
} List<List<Integer>> temp;
if((temp=pathSum(root.left, goal)).size()!=0) {
for(List<Integer> list:temp) {
list.add(0, root.val);
ans.add(list);
}
} if((temp=pathSum(root.right, goal)).size()!=0) {
for(List<Integer> list:temp) {
list.add(0,root.val);
ans.add(list);
}
} return ans;
} }

Convert Sorted List to Binary Search Tree

LC109

Given a singly linked list where elements are sorted in ascending order, convert it to a height balanced BST.

For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.

Example:

Given the sorted linked list: [-10,-3,0,5,9],

One possible answer is: [0,-3,9,-10,null,5], which represents the following height balanced BST:

      0
/ \
-3 9
/ /
-10 5
  • My Answer
package medium2;

/**
* @author Tom Qian
* @email tomqianmaple@outlook.com
* @github https://github.com/bluemapleman
* @date 2018年6月11日
*/
public class ConvertSortedListtoBinarySearchTree
{
// DFS: make use of recursion to backtrack
// find the middle node of sorted linked list, and take it as the root node of the BST.
public TreeNode sortedListToBST(ListNode head) {
if(head==null)
return null; ListNode slow=head,fast=head,followSlow=head; boolean moveFlag=false;
while(fast!=null && fast.next!=null) {
if(moveFlag)
followSlow=followSlow.next;
moveFlag=true;
slow=slow.next;
fast=fast.next.next;
}
TreeNode root=new TreeNode(slow.val); if(moveFlag) {
followSlow.next=null;
root.left=sortedListToBST(head);
root.right=sortedListToBST(slow.next);
} return root;
}
}

Course Schedule

There are a total of n courses you have to take, labeled from 0 to n-1.

Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]

Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?

Example 1:

Input: 2, [[1,0]]
Output: true
Explanation: There are a total of 2 courses to take.
To take course 1 you should have finished course 0. So it is possible.

Example 2:

Input: 2, [[1,0],[0,1]]
Output: false
Explanation: There are a total of 2 courses to take.
To take course 1 you should have finished course 0, and to take course 0 you should
also have finished course 1. So it is impossible.

Note:

1.The input prerequisites is a graph represented by a list of edges, not adjacency matrices. Read more about how a graph is represented.

2.You may assume that there are no duplicate edges in the input prerequisites.

  • My Answer
// DFS
public boolean canFinish(int numCourses, int[][] prerequisites) {
Map<Integer, List<Integer>> map=new HashMap<>();
for(int i=0;i<numCourses;i++)
map.put(i, new ArrayList<>());
for(int i=0;i<prerequisites.length;i++) {
map.get(prerequisites[i][0]).add(prerequisites[i][1]);
} // start DFS: detect if there is any circle in course graph, i.e. whether DFS starting from certain start point i would lead to the start point again.
for(int i=0;i<numCourses;i++) {
// Use a set to avoid infinite loop: when met same node twice, ignore it.
Set<Integer> set=new HashSet<>();
// Use a stack to backtrack
ArrayDeque<Integer> stack=new ArrayDeque<>();
List<Integer> preCourseList=map.get(i);
for(Integer preCourse:preCourseList)
stack.push(preCourse);
while(!stack.isEmpty()) {
int preCourse=stack.pop(); if(set.contains(preCourse))
continue;
else
set.add(preCourse); if(preCourse==i)
return false;
else {
preCourseList=map.get(preCourse);
for(Integer tempPreCourse:preCourseList) {
stack.push(tempPreCourse);
}
}
}
} return true;
}

BFS

Course Schedule

  • My Answer
// BFS
public boolean canFinish(int numCourses, int[][] prerequisites) {
Map<Integer, List<Integer>> map=new HashMap<>();
for(int i=0;i<numCourses;i++)
map.put(i, new ArrayList<>());
for(int i=0;i<prerequisites.length;i++) {
map.get(prerequisites[i][0]).add(prerequisites[i][1]);
} // start DFS: detect if there is any circle in course graph, i.e. whether BFS starting from certain start point i would lead to the start point again.
for(int i=0;i<numCourses;i++) {
// Use a set to avoid infinite loop: when met same node twice, ignore it.
Set<Integer> set=new HashSet<>();
// Use a queue to remember nodes of same depth level
ArrayDeque<Integer> queue=new ArrayDeque<>();
List<Integer> preCourseList=map.get(i);
for(Integer preCourse:preCourseList)
queue.add(preCourse);
while(!queue.isEmpty()) {
int preCourse=queue.poll(); if(set.contains(preCourse))
continue;
else
set.add(preCourse); if(preCourse==i)
return false;
else {
preCourseList=map.get(preCourse);
for(Integer tempPreCourse:preCourseList) {
queue.add(tempPreCourse);
}
}
}
} return true;
}

Binary Tree Right Side View

Given a binary tree, imagine yourself standing on the right side of it, return the values of the nodes you can see ordered from top to bottom.

Example:

Input: [1,2,3,null,5,null,4]
Output: [1, 3, 4]
Explanation: 1 <---
/ \
2 3 <---
\ \
5 4 <---
  • My Answer
package medium2;

import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.List; /**
* @author Tom Qian
* @email tomqianmaple@outlook.com
* @github https://github.com/bluemapleman
* @date 2018年6月12日
*/
public class BinaryTreeRightSideView
{
public List<Integer> rightSideView(TreeNode root) {
List<Integer> ans=new ArrayList<>();
if(root==null)
return ans; ans.add(root.val); ArrayDeque<TreeNode> queue1=new ArrayDeque<>(),queue2=new ArrayDeque<>();;
queue1.add(root); while(!queue1.isEmpty() || !queue2.isEmpty()){
TreeNode rightestNode=null; if(!queue1.isEmpty()) {
while(!queue1.isEmpty()) {
TreeNode fatherNode=queue1.poll(); if(fatherNode.right!=null) {
queue2.add(fatherNode.right);
if(rightestNode==null)
rightestNode=fatherNode.right;
} if(fatherNode.left!=null) {
queue2.add(fatherNode.left);
if(rightestNode==null)
rightestNode=fatherNode.left;
}
}
}else{
while(!queue2.isEmpty()) {
TreeNode fatherNode=queue2.poll();
if(fatherNode.right!=null) {
queue1.add(fatherNode.right);
if(rightestNode==null)
rightestNode=fatherNode.right;
}
if(fatherNode.left!=null) {
queue1.add(fatherNode.left);
if(rightestNode==null)
rightestNode=fatherNode.left;
}
}
} if(rightestNode!=null)
ans.add(rightestNode.val); } return ans;
}
}

.

BFS与DFS常考算法整理的更多相关文章

  1. Leetcode——二叉树常考算法整理

    二叉树常考算法整理 希望通过写下来自己学习历程的方式帮助自己加深对知识的理解,也帮助其他人更好地学习,少走弯路.也欢迎大家来给我的Github的Leetcode算法项目点star呀~~ 二叉树常考算法 ...

  2. Leetcode——回溯法常考算法整理

    Leetcode--回溯法常考算法整理 Preface Leetcode--回溯法常考算法整理 Definition Why & When to Use Backtrakcing How to ...

  3. C++常考算法

    1 strcpy, char * strcpy(char* target, char* source){  // 不返回const char*, 因为如果用strlen(strcpy(xx,xxx)) ...

  4. c++常考算法知识点汇总

    前言:写这篇博客完全是给自己当做笔记用的,考虑到自己的c++基础不是很踏实,只在大一学了一学期,c++的面向对象等更深的知识也一直没去学.就是想当遇到一些比较小的知识,切不值得用一整篇 博客去记述的时 ...

  5. .NET面试常考算法

    1.求质数    质数也成为素数,质数就是这个数除了1和他本身两个因数以外,没有其他因数的数,叫做质数,和他相反的是合数,    就是除了1和他本身两个因数以外,还友其他因数的数叫做合数. 1 nam ...

  6. JS-常考算法题解析

    常考算法题解析 这一章节依托于上一章节的内容,毕竟了解了数据结构我们才能写出更好的算法. 对于大部分公司的面试来说,排序的内容已经足以应付了,由此为了更好的符合大众需求,排序的内容是最多的.当然如果你 ...

  7. 近5年常考Java面试题及答案整理(三)

    上一篇:近5年常考Java面试题及答案整理(二) 68.Java中如何实现序列化,有什么意义? 答:序列化就是一种用来处理对象流的机制,所谓对象流也就是将对象的内容进行流化.可以对流化后的对象进行读写 ...

  8. 近5年常考Java面试题及答案整理(二)

    上一篇:近5年常考Java面试题及答案整理(一) 31.String s = new String("xyz");创建了几个字符串对象? 答:两个对象,一个是静态区的"x ...

  9. 面试常考的常用数据结构与算法(zz)

    数据结构与算法,这个部分的内容其实是十分的庞大,要想都覆盖到不太容易.在校学习阶段我们可能需要对每种结构,每种算法都学习,但是找工作笔试或者面试的时候,要在很短的时间内考察一个人这方面的能力,把每种结 ...

随机推荐

  1. memcached单点登录配置

    域名 www.lxy.comblog.lxy.comnews.lxy.comshop.lxy.com php配置 session.save_handler = memcache session写mem ...

  2. 直播内容大面积偏轨:都是high点的错?

    当下的直播行业看似火爆,却是外强中干.直播平台数量的暴增.主播人数的飙升.直播内容同质化严重等问题,都在成为新的行业症结.而面对复杂的情况,不仅刚入行的小主播,就连爆红的大主播都感到寒冬的难熬.为了能 ...

  3. C++扬帆远航——6(三色球)

    /* * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:sanseqiu.cpp * 作者:常轩 * 完成日期:2016 ...

  4. 成长日记(2) Java面向对象

    本篇主要是记录自己在学习路上的笔记,如果有哪里记错了请大家直接指出 面向对象的概念 *人为抽象的一种编程模型 *面向过程 代码集中 难以维护 *类:对事物 算法 逻辑 概念等的抽象 理解成 模板 图纸 ...

  5. AWS EC2+Docker+JMeter构建分布式负载测试基础架构

    目录 概述及范围 前提条件 Part 1: Local setup-本地配置 Part 2: Cloud端基础架构--Infrastructure 总结: 原文链接 @ 概述及范围 本文介绍有关如何使 ...

  6. 前端模板引擎doT.js的使用

    前言 我们在做前端开发时,经常需要根据后台返回的json数据动态生成html并插入到页面中显示.最简单的方法就是通过jQuery去遍历数据拼接html,如以下: <script> var ...

  7. Android Base64图片无法长按保存 问题解决

    踩了一个巨坑. 目前微信ios/android 均能长按保存src=base64的图片  (微信android x5 专门解决了这个问题); 但是android其他App没有针对解决这个系统问题(姑且 ...

  8. Linux apache开启虚拟主机伪静态.htaccess

    打开apache配置文件 /etc/httpd/conf/httpd.conf 查找“#LoadModule rewrite_module modules/mod_rewrite.so” 去掉前面的# ...

  9. ubuntu 安装flask+nginx+gunicorn 待定

    第一步 先检查服务器环境   pip python3 mysql redis 能下就下,该升级就升级 第二步 如果你的flask程序在github上 请使用git clone 地址 下载下来(如果是私 ...

  10. 基于osg的python三维程序开发(一)

    背景: osg是一款开源的三维引擎,在过去多年的发展中积累了大量的用户,该引擎基于场景树的管理,使用方法简单.但是对长期使用python作为开发工具的朋友来说, 有一定门槛. 下面的小程序,演示了如何 ...