Tian Ji -- The Horse Racing

Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 17699   Accepted: 5461

Description

Here is a famous story in Chinese history.

That was about 2300 years ago. General Tian Ji was a
high official in the country Qi. He likes to play horse racing with the
king and others.

Both of Tian and the king have three horses in different classes,
namely, regular, plus, and super. The rule is to have three rounds in a
match; each of the horses must be used in one round. The winner of a
single round takes two hundred silver dollars from the loser.

Being the most powerful man in the country, the king has so nice
horses that in each class his horse is better than Tian's. As a result,
each time the king takes six hundred silver dollars from Tian.

Tian Ji was not happy about that, until he met Sun Bin, one of the
most famous generals in Chinese history. Using a little trick due to
Sun, Tian Ji brought home two hundred silver dollars and such a grace in
the next match.

It was a rather simple trick. Using his regular class horse race
against the super class from the king, they will certainly lose that
round. But then his plus beat the king's regular, and his super beat the
king's plus. What a simple trick. And how do you think of Tian Ji, the
high ranked official in China?

Were Tian Ji lives in nowadays, he will certainly laugh at himself.
Even more, were he sitting in the ACM contest right now, he may discover
that the horse racing problem can be simply viewed as finding the
maximum matching in a bipartite graph. Draw Tian's horses on one side,
and the king's horses on the other. Whenever one of Tian's horses can
beat one from the king, we draw an edge between them, meaning we wish to
establish this pair. Then, the problem of winning as many rounds as
possible is just to find the maximum matching in this graph. If there
are ties, the problem becomes more complicated, he needs to assign
weights 0, 1, or -1 to all the possible edges, and find a maximum
weighted perfect matching...

However, the horse racing problem is a very special case of
bipartite matching. The graph is decided by the speed of the horses -- a
vertex of higher speed always beat a vertex of lower speed. In this
case, the weighted bipartite matching algorithm is a too advanced tool
to deal with the problem.

In this problem, you are asked to write a program to solve this special case of matching problem.

Input

The
input consists of up to 50 test cases. Each case starts with a positive
integer n ( n<=1000) on the first line, which is the number of
horses on each side. The next n integers on the second line are the
speeds of Tian's horses. Then the next n integers on the third line are
the speeds of the king's horses. The input ends with a line that has a
single `0' after the last test case.

Output

For each input case, output a line containing a single number, which is the maximum money Tian Ji will get, in silver dollars.

Sample Input

3
92 83 71
95 87 74
2
20 20
20 20
2
20 19
22 18
0

Sample Output

200
0
0
/*
贪心策略:
1,如果田忌的最快马快于齐王的最快马,则两者比。
(因为若是田忌的别的马很可能就赢不了了,所以两者比)
2,如果田忌的最快马慢于齐王的最快马,则用田忌的最慢马和齐王的最快马比。
(由于所有的马都赢不了齐王的最快马,所以用损失最小的,拿最慢的和他比)
3,若相等,则比较田忌的最慢马和齐王的最慢马
3.1,若田忌最慢马快于齐王最慢马,两者比。
(田忌的最慢马既然能赢一个就赢呗,而且齐王的最慢马肯定也得有个和他比,所以选最小的比他快得。)
3.2,其他,则拿田忌的最慢马和齐王的最快马比。
(反正所有的马都比田忌的最慢马快了,所以这匹马必输,选贡献最大的,干掉齐王的最快马)
*/ #include<iostream>
#include<algorithm>
#include<string.h>
#include<string>
#include<vector>
#include<stack>
#include<math.h>
#define mod 998244353
#define ll long long
#define MAX 0x3f3f3f3f
using namespace std;
int a[],b[];
int n;
bool cmp(int x,int y)
{
return x>y;
}
int main()
{
while(scanf("%d",&n)&&n)
{
for(int i=;i<n;i++)
scanf("%d",&a[i]);
for(int i=;i<n;i++)
scanf("%d",&b[i]);
sort(a,a+n,cmp);
sort(b,b+n,cmp);
int mx_a=,mn_a=n-,mx_b=,mn_b=n-,ans=;
while(n--)
{
if(a[mx_a]>b[mx_b])//田忌最快的马比齐王最快的马快
{
ans=ans+;
mx_a++;
mx_b++;
}
else if(a[mx_a]<b[mx_b])//田忌最快的马比齐王最快的马慢
{
ans=ans-;
mn_a--;
mx_b++;
}
else//快马速度相等,比较慢马
{
if(a[mn_a]>b[mn_b])//田忌最慢的马比齐王最慢的马快
{
ans=ans+;
mn_a--;
mn_b--;
}
else if(a[mn_a]<b[mx_b])//必输,用田忌慢马消耗齐王快马
{
ans=ans-;
mn_a--;
mx_b++;
}
else//相等,还是用田忌慢马消耗快马
{
//ans=ans-200;
mn_a--;
mx_b++;
}
}
}
printf("%d\n",ans);
}
}

POJ 2287 田忌赛马的更多相关文章

  1. POJ 2287 田忌赛马 贪心算法

    田忌赛马,大致题意是田忌和国王赛马,赢一局得200元,输一局输掉200元,平局则财产不动. 先输入一个整数N,接下来一行是田忌的N匹马,下一行是国王的N匹马.当N为0时结束. 此题为贪心算法解答,有两 ...

  2. poj 2287(贪心)

    Tian Ji -- The Horse Racing Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 12490   Acc ...

  3. POJ 2287 Tian Ji -- The Horse Racing(贪心)

    题意:田忌和齐王有n匹马,进行n局比赛,每局比赛输者给胜者200,问田忌最多能得多少钱. 分析:如果田忌最下等的马比齐王最下等的马好,是没必要拿最下等的马和齐王最好的马比的.(最上等马同理) 因此,如 ...

  4. (贪心5.1.2)POJ 2287 Tian Ji -- The Horse Racing

    /* * POJ_2287.cpp * * Created on: 2013年10月9日 * Author: Administrator */ #include <iostream> #i ...

  5. poj 2287 动态规划

    用贪心简单证明之后就是一个从两头取的动态规划 #include <iostream> #include <cstring> #include <cstdio> #i ...

  6. BZOJ 2287: 【POJ Challenge】消失之物( 背包dp )

    虽然A掉了但是时间感人啊.... f( x, k ) 表示使用前 x 种填满容量为 k 的背包的方案数, g( x , k ) 表示使用后 x 种填满容量为 k 的背包的方案数. 丢了第 i 个, 要 ...

  7. BZOJ 2287 【POJ Challenge】消失之物(DP+容斥)

    2287: [POJ Challenge]消失之物 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 986  Solved: 572[Submit][S ...

  8. bzoj 2287: 【POJ Challenge】消失之物

    Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 物品装满容积为 x ...

  9. [BZOJ 2287/POJ openjudge1009/Luogu P4141] 消失之物

    题面: 传送门:http://poj.openjudge.cn/practice/1009/ Solution DP+DP 首先,我们可以很轻松地求出所有物品都要的情况下的选择方案数,一个简单的满背包 ...

随机推荐

  1. iOS学习7:iOS沙盒(sandBox)机制(一)之获取沙盒路径及目录说明(转)

    转:http://my.oschina.net/joanfen/blog/151145 一.iOS沙盒机制 iOS的应用只能访问为该应用创建的区域,不可访问其他区域,应用的其他非代码文件都存在此目录下 ...

  2. 一文解读CDN (转)

    如今这个移动互联网时代,越来越多的人使用手机观看视频,丰富自己的娱乐生活. 可是,大家在追剧的时候,有没有想过一个问题——为什么有时候明明自己手机的网速很快,但观看视频时,仍然卡顿? 回答这个问题之前 ...

  3. sqlplus导入sql,dmp导入导出

    1.创建表空间及用户名 1).用Oracle的EM做数据库的管理(表空间.用户及授权为例子) https://blog.csdn.net/anderslu/article/details/566701 ...

  4. 七 MyBatis整合Spring,DAO开发(传统DAO&动态代理DAO)

    整合思路: 1.SQLSessionFactory对象应该放到Spring中作为单例存在 2.传统dao开发方式中,应该从Spring容器中获得SqlSession对象 3.Mapper代理行驶中,应 ...

  5. java并发:原子类之AtomicLong

    原子类之AtomicLong java线程中的操作,需要满足原子性.可见性等原则,比如i++这样的操作不具备原子性, A线程读取了i,另一个线程执行i++,A线程再执行i++就会引发线程安全问题 推荐 ...

  6. 微信二次分享的JSSDK的调用

    网页端微信的二次分享如果不调用分享的SDK,分享之后就不会带有标题.描述 .缩略图 微信分享SDK调用 引入 <script src="//res.wx.qq.com/open/js/ ...

  7. JS截取腾讯视频和去除视频广告

    一:腾讯视频截取 H5视频播放除了video标签以外,还有iframe嵌套视频 项目需求是用户输入腾讯视频的html链接,如 https://v.qq.com/x/page/y0116k2vspw.h ...

  8. 《O’Reilly精品图书系列共21册》azw3

    套装书目: <机器学习:实用案例解析> <利用Python进行数据分析> <社交网站的数据挖掘与分析(原书第2版)> <社会网络分析:方法与实践> &l ...

  9. express写的接口在疯狂刷新几十次后,服务器挂掉

    用到的命令行: show status like 'Threads%'; show variables like '%max_connections%'; show global status lik ...

  10. 让Nutz支持最快的模板引擎Smarty4j

    Smarty4j是一个开源的模板引擎.没错,它就是著名的php模板引擎之Java移植版. 它特点就是将模板文件或者字符串编译成java类直接执行,所以效率比一般的模板解释的方式处理要快.它发展较晚,所 ...