POJ 2287 田忌赛马
Tian Ji -- The Horse Racing
Time Limit: 5000MS | Memory Limit: 65536K | |
Total Submissions: 17699 | Accepted: 5461 |
Description
That was about 2300 years ago. General Tian Ji was a
high official in the country Qi. He likes to play horse racing with the
king and others.Both of Tian and the king have three horses in different classes,
namely, regular, plus, and super. The rule is to have three rounds in a
match; each of the horses must be used in one round. The winner of a
single round takes two hundred silver dollars from the loser.Being the most powerful man in the country, the king has so nice
horses that in each class his horse is better than Tian's. As a result,
each time the king takes six hundred silver dollars from Tian.Tian Ji was not happy about that, until he met Sun Bin, one of the
most famous generals in Chinese history. Using a little trick due to
Sun, Tian Ji brought home two hundred silver dollars and such a grace in
the next match.It was a rather simple trick. Using his regular class horse race
against the super class from the king, they will certainly lose that
round. But then his plus beat the king's regular, and his super beat the
king's plus. What a simple trick. And how do you think of Tian Ji, the
high ranked official in China?
Were Tian Ji lives in nowadays, he will certainly laugh at himself.
Even more, were he sitting in the ACM contest right now, he may discover
that the horse racing problem can be simply viewed as finding the
maximum matching in a bipartite graph. Draw Tian's horses on one side,
and the king's horses on the other. Whenever one of Tian's horses can
beat one from the king, we draw an edge between them, meaning we wish to
establish this pair. Then, the problem of winning as many rounds as
possible is just to find the maximum matching in this graph. If there
are ties, the problem becomes more complicated, he needs to assign
weights 0, 1, or -1 to all the possible edges, and find a maximum
weighted perfect matching...
However, the horse racing problem is a very special case of
bipartite matching. The graph is decided by the speed of the horses -- a
vertex of higher speed always beat a vertex of lower speed. In this
case, the weighted bipartite matching algorithm is a too advanced tool
to deal with the problem.
In this problem, you are asked to write a program to solve this special case of matching problem.
Input
input consists of up to 50 test cases. Each case starts with a positive
integer n ( n<=1000) on the first line, which is the number of
horses on each side. The next n integers on the second line are the
speeds of Tian's horses. Then the next n integers on the third line are
the speeds of the king's horses. The input ends with a line that has a
single `0' after the last test case.
Output
Sample Input
3
92 83 71
95 87 74
2
20 20
20 20
2
20 19
22 18
0
Sample Output
200
0
0
/*
贪心策略:
1,如果田忌的最快马快于齐王的最快马,则两者比。
(因为若是田忌的别的马很可能就赢不了了,所以两者比)
2,如果田忌的最快马慢于齐王的最快马,则用田忌的最慢马和齐王的最快马比。
(由于所有的马都赢不了齐王的最快马,所以用损失最小的,拿最慢的和他比)
3,若相等,则比较田忌的最慢马和齐王的最慢马
3.1,若田忌最慢马快于齐王最慢马,两者比。
(田忌的最慢马既然能赢一个就赢呗,而且齐王的最慢马肯定也得有个和他比,所以选最小的比他快得。)
3.2,其他,则拿田忌的最慢马和齐王的最快马比。
(反正所有的马都比田忌的最慢马快了,所以这匹马必输,选贡献最大的,干掉齐王的最快马)
*/ #include<iostream>
#include<algorithm>
#include<string.h>
#include<string>
#include<vector>
#include<stack>
#include<math.h>
#define mod 998244353
#define ll long long
#define MAX 0x3f3f3f3f
using namespace std;
int a[],b[];
int n;
bool cmp(int x,int y)
{
return x>y;
}
int main()
{
while(scanf("%d",&n)&&n)
{
for(int i=;i<n;i++)
scanf("%d",&a[i]);
for(int i=;i<n;i++)
scanf("%d",&b[i]);
sort(a,a+n,cmp);
sort(b,b+n,cmp);
int mx_a=,mn_a=n-,mx_b=,mn_b=n-,ans=;
while(n--)
{
if(a[mx_a]>b[mx_b])//田忌最快的马比齐王最快的马快
{
ans=ans+;
mx_a++;
mx_b++;
}
else if(a[mx_a]<b[mx_b])//田忌最快的马比齐王最快的马慢
{
ans=ans-;
mn_a--;
mx_b++;
}
else//快马速度相等,比较慢马
{
if(a[mn_a]>b[mn_b])//田忌最慢的马比齐王最慢的马快
{
ans=ans+;
mn_a--;
mn_b--;
}
else if(a[mn_a]<b[mx_b])//必输,用田忌慢马消耗齐王快马
{
ans=ans-;
mn_a--;
mx_b++;
}
else//相等,还是用田忌慢马消耗快马
{
//ans=ans-200;
mn_a--;
mx_b++;
}
}
}
printf("%d\n",ans);
}
}
POJ 2287 田忌赛马的更多相关文章
- POJ 2287 田忌赛马 贪心算法
田忌赛马,大致题意是田忌和国王赛马,赢一局得200元,输一局输掉200元,平局则财产不动. 先输入一个整数N,接下来一行是田忌的N匹马,下一行是国王的N匹马.当N为0时结束. 此题为贪心算法解答,有两 ...
- poj 2287(贪心)
Tian Ji -- The Horse Racing Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 12490 Acc ...
- POJ 2287 Tian Ji -- The Horse Racing(贪心)
题意:田忌和齐王有n匹马,进行n局比赛,每局比赛输者给胜者200,问田忌最多能得多少钱. 分析:如果田忌最下等的马比齐王最下等的马好,是没必要拿最下等的马和齐王最好的马比的.(最上等马同理) 因此,如 ...
- (贪心5.1.2)POJ 2287 Tian Ji -- The Horse Racing
/* * POJ_2287.cpp * * Created on: 2013年10月9日 * Author: Administrator */ #include <iostream> #i ...
- poj 2287 动态规划
用贪心简单证明之后就是一个从两头取的动态规划 #include <iostream> #include <cstring> #include <cstdio> #i ...
- BZOJ 2287: 【POJ Challenge】消失之物( 背包dp )
虽然A掉了但是时间感人啊.... f( x, k ) 表示使用前 x 种填满容量为 k 的背包的方案数, g( x , k ) 表示使用后 x 种填满容量为 k 的背包的方案数. 丢了第 i 个, 要 ...
- BZOJ 2287 【POJ Challenge】消失之物(DP+容斥)
2287: [POJ Challenge]消失之物 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 986 Solved: 572[Submit][S ...
- bzoj 2287: 【POJ Challenge】消失之物
Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 物品装满容积为 x ...
- [BZOJ 2287/POJ openjudge1009/Luogu P4141] 消失之物
题面: 传送门:http://poj.openjudge.cn/practice/1009/ Solution DP+DP 首先,我们可以很轻松地求出所有物品都要的情况下的选择方案数,一个简单的满背包 ...
随机推荐
- JavaWeb开发记录全过程--(1)环境配置
一. 开发工具:idea 理由:根据idea 如何连接服务器,可以直接在idea上连接服务器 安装:根据IntelliJ IDEA 下载安装(含注册码),进行非常规手段使用idea 二.分析问题: # ...
- Java1.7已经舍弃substr了
网上一堆在写substring和substr区别的文章,都是过时的. 起码在官方6.0的api文档中已经找不到了,只有substring()
- Laravel 验证 教程
英文源文章: https://www.techiediaries.com/laravel-authentication-tutorial/ 在上一篇教程中,我们已经接触过Laravel,同时介绍了最新 ...
- Educational Codeforces Round 69 (Rated for Div. 2)D(DP,思维)
#include<bits/stdc++.h>using namespace std;int a[300007];long long sum[300007],tmp[300007],mx[ ...
- SystemProperities
SystemProperties与Settings.System 1 使用 SystemProperties.get 如果属性名称以“ro.”开头,那么这个属性被视为只读属性.一旦设置,属性值不能改变 ...
- Python 基础之集合相关操作与函数和字典相关函数
一:集合相关操作与相关函数 1.集合相关操作(交叉并补) (1)intersection() 交集 set1 = {"one","two","thre ...
- 一 SpringMvc概述&入门配置
SpringMVC: 类似Struts2的MVC框架,属于SpringFrameWork的后续产品. 与Struts2的区别: 参数传递: Struts2通过模型驱动,属性设置set方法,值栈.类级 ...
- 三 Spring对于延迟加载问题的解决
Spring提供了延迟加载问题的解决方法 什么是延迟加载? 延迟加载:lazy(懒加载) 执行到该行代码的时候不会发送语句,真正使用这个对象的属性的时候才会发送sql语句进行查询. 类级别延迟加载:指 ...
- Ubuntu 安装MySQL并打开远程连接
首先使用su命令切换到root账户 在用apt-get install mysql-server命令获取到MySQL的服务 等待下载安装,按照提示输入MySQL的密码 安装完成后对mysqld.cnf ...
- oracle数据库时间是毫秒值,创建function,直接SQL取值。
首先创建一个function: create or replace function num_to_date(in_number NUMBER) return date is begin return ...