@desription@

给定两个长度为 n 的数列 A, B。现你可以将两数列重排列,然后对应项相加得到 C[i] = A[i] + B[i]。

问你所能构造的 C 中众数的最大出现次数,以及此时的众数。如果有多种方案,取最大的众数。

原题传送门。

@solution@

记 \(cnta[i]\) 表示 \(i\) 在 A 中的出现次数,\(cntb[i]\) 表示 \(i\) 在 B 中的出现次数。则 p 在 C 中的最大出现次数为 \(\sum_{i=0}^{p}\min(cnta[i], cntb[p-i])\)。

注意到它长得特别像个卷积。我们记 \(Fa_i(x) = \sum_{p=0}^{MAX} [cnta[p] = i]x^{p}\),同理记 \(Fb_i(x) = \sum_{p=0}^{MAX} [cntb[p] = i]x^p\)。则答案:

\[G(x) = \sum_{i=1}^{n}i\times (Fa_i(x)(\sum_{j=i+1}^{n} Fb_j(x)) + Fb_i(x)(\sum_{j=i+1}^{n} Fa_j(x)) + Fa_i(x) Fb_i(x))
\]

不过这样算还不如暴力快。

注意到 \(\sum cnta[i] = n\),也就是说如果 i 越大,满足 cnta[p] = i 的 p 会越少。

具体而言,A 中 cnta[p] ≥ K 有 \(O(\frac{n}{K})\) 个,B 中也有 \(O(\frac{n}{K})\)。那么我们可以枚举每一个可能的二元组暴力计算,时间复杂度为 \(O(\frac{n^2}{K^2})\)。

当 K 较大时,这个暴力算法相对于上面的卷积方法而言,其实是非常快的。

于是又到了喜闻乐见的复杂度平衡时间:对于 i < K,使用卷积计算,复杂度为 \(O(K\times MAX\times \log MAX)\);对于 i >= K,使用暴力枚举,复杂度为 \(O(\frac{n^2}{K^2})\)

因为 n 与 MAX 同阶,我们直接令 \(Kn\log n = \frac{n^2}{K^2}\),解得 \(K = (\frac{n}{\log n})^{\frac{1}{3}}\)。

然后总时间复杂度 \(O(n^{\frac{4}{3}}\times \log^{\frac{2}{3}}n )\),虽然看着挺糟不过其实挺优秀的。

@accepted code@

#include <cstdio>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std; const int MOD = 998244353;
const int MAXN = (1 << 17);
const int K = 18;
const int G = 3; inline int add(int x, int y) {return (x + y >= MOD ? x + y - MOD : x + y);}
inline int sub(int x, int y) {return (x - y < 0 ? x - y + MOD : x - y);}
inline int mul(int x, int y) {return 1LL * x * y % MOD;} int pow_mod(int b, int p) {
int ret = 1;
for(int i=p;i;i>>=1,b=mul(b,b))
if( i & 1 ) ret = mul(ret, b);
return ret;
} int w[22], iw[22];
void init() {
for(int i=0;i<22;i++) {
w[i] = pow_mod(G, (MOD - 1) / (1 << i));
iw[i] = pow_mod(w[i], MOD - 2);
}
}
int length(int n) {
int len; for(len = 1; len < n; len <<= 1);
return len;
}
void ntt(int *A, int n, int type) {
for(int i=0,j=0;i<n;i++) {
if( i < j ) swap(A[i], A[j]);
for(int k=(n>>1);(j^=k)<k;k>>=1);
}
for(int i=1;(1<<i)<=n;i++) {
int s = (1 << i), t = (s >> 1);
int u = (type == 1 ? w[i] : iw[i]);
for(int j=0;j<n;j+=s) {
for(int k=0,p=1;k<t;k++,p=mul(p,u)) {
int x = A[j+k], y = mul(p, A[j+k+t]);
A[j+k] = add(x, y), A[j+k+t] = sub(x, y);
}
}
}
if( type == -1 ) {
int iv = pow_mod(n, MOD - 2);
for(int i=0;i<n;i++)
A[i] = mul(A[i], iv);
}
} class SumOfArrays{
public:
vector<pair<int, int> >na, nb;
int f[2*MAXN + 5];
int ca[MAXN + 5], cb[MAXN + 5];
int a[MAXN + 5], b[MAXN + 5];
int ta1[2*MAXN + 5], ta2[2*MAXN + 5], tb1[2*MAXN + 5], tb2[2*MAXN + 5], tmp[2*MAXN + 5];
string findbestpair(int n, vector<int>A, vector<int>B) {
init();
a[0] = A[0], a[1] = A[1], b[0] = B[0], b[1] = B[1];
for(int i=2;i<n;i++) {
a[i] = (1LL*A[2]*a[i-1]%A[5] + 1LL*A[3]*a[i-2]%A[5] + A[4]) % A[5];
b[i] = (1LL*B[2]*b[i-1]%B[5] + 1LL*B[3]*b[i-2]%B[5] + B[4]) % B[5];
}
for(int i=0;i<n;i++)
ca[a[i]]++, cb[b[i]]++;
for(int i=0;i<MAXN;i++) {
if( ca[i] >= K ) na.push_back(make_pair(i, ca[i]));
if( cb[i] >= K ) nb.push_back(make_pair(i, cb[i]));
}
for(int i=0;i<(int)na.size();i++)
for(int j=0;j<(int)nb.size();j++)
f[na[i].first + nb[j].first] += min(na[i].second, nb[j].second);
for(int i=1;i<K;i++) {
bool flag = false;
for(int j=0;j<MAXN;j++) {
if( ca[j] > i ) ta1[j]++;
else if( ca[j] == i ) ta2[j]++, flag = true; if( cb[j] > i ) tb1[j]++;
else if( cb[j] == i ) tb2[j]++, flag = true;
}
int len = 2*MAXN;
if( flag ) {
ntt(ta1, len, 1), ntt(ta2, len, 1), ntt(tb1, len, 1), ntt(tb2, len, 1);
for(int j=0;j<len;j++)
tmp[j] = add(add(mul(ta1[j], tb2[j]), mul(ta2[j], tb1[j])), mul(ta2[j], tb2[j]));
ntt(tmp, len, -1);
for(int j=0;j<len;j++)
f[j] = add(f[j], mul(tmp[j], i));
}
for(int j=0;j<len;j++) ta1[j] = ta2[j] = tb1[j] = tb2[j] = tmp[j] = 0;
} int ans = 0, res;
for(int i=2*MAXN-1;i>=0;i--)
if( f[i] > ans ) ans = f[i], res = i;
string ret = "";
while( res ) ret = (char)(res % 10 + '0') + ret, res /= 10;
ret = " " + ret;
while( ans ) ret = (char)(ans % 10 + '0') + ret, ans /= 10;
return ret;
}
};

@details@

为什么要把函数返回值设置成这么反人类形式,还要把数转化成字符串。直接返回一个数组不挺好的。

@topcoder - SRM603D1L3@ SumOfArrays的更多相关文章

  1. TopCoder kawigiEdit插件配置

    kawigiEdit插件可以提高 TopCoder编译,提交效率,可以管理保存每次SRM的代码. kawigiEdit下载地址:http://code.google.com/p/kawigiedit/ ...

  2. 记第一次TopCoder, 练习SRM 583 div2 250

    今天第一次做topcoder,没有比赛,所以找的最新一期的SRM练习,做了第一道题. 题目大意是说 给一个数字字符串,任意交换两位,使数字变为最小,不能有前导0. 看到题目以后,先想到的找规律,发现要 ...

  3. TopCoder比赛总结表

    TopCoder                        250                              500                                 ...

  4. Topcoder几例C++字符串应用

    本文写于9月初,是利用Topcoder准备应聘时的机试环节临时补习的C++的一部分内容.签约之后,没有再进行练习,此文暂告一段落. 换句话说,就是本文太监了,一直做草稿看着别扭,删掉又觉得可惜,索性发 ...

  5. TopCoder

    在TopCoder下载好luncher,网址:https://www.topcoder.com/community/competitive%20programming/ 选择launch web ar ...

  6. TopCoder SRM 596 DIV 1 250

    body { font-family: Monospaced; font-size: 12pt } pre { font-family: Monospaced; font-size: 12pt } P ...

  7. 求拓扑排序的数量,例题 topcoder srm 654 div2 500

    周赛时遇到的一道比较有意思的题目: Problem Statement      There are N rooms in Maki's new house. The rooms are number ...

  8. TopCoder SRM 590

     第一次做TC,不太习惯,各种调试,只做了一题...... Problem Statement     Fox Ciel is going to play Gomoku with her friend ...

  9. Topcoder Arena插件配置和训练指南

    一. Arena插件配置 1. 下载Arena 指针:http://community.topcoder.com/tc?module=MyHome 左边Competitions->Algorit ...

随机推荐

  1. 1.scrapy框架

    Scrapy 是一个基于 Twisted 的异步处理框架.异步就是说调用在发出之后,这个调用就直接返回,不管有没有结果.(非阻塞关注的是程序在等待调用结果(消息.返回值)时的状态,指在不能立刻得到结果 ...

  2. D:Sequence Swapping

    BaoBao has just found a strange sequence {<, >, <, >, , <, >} of length in his poc ...

  3. 工业互联网可视化系统风格的抉择:线框模式之 3D 数据中心机房的实现

    前言 3D 可视化,就是把复杂抽象的数据信息,以合适的视觉元素及视角去呈现,方便系统的展示.维护和管理.而在可视化系统的搭建选择上,所呈现的风格样式效果多种多样,各自所突出的适用场合也不尽相同.对于科 ...

  4. mybatis的一堆多映射使用配置

    自己仿站jeep官网在制作商城时,商品详情页面需要带着一个商品的信息,商品的配置,配置对应的颜色,商品的图片   如图 首先设计业务bean 一辆车的信息 业务一对多的大业务bean,继承Car.ja ...

  5. 【译】OWIN: Open Web Server Interface for .NET

    主要是使用 OAuth 时,它运行在 OWIN 上,然后又出了若干问题,总之,发现对 IIS.ASP.NET 和 OWIN 理解一塌糊涂. 后面看到 OWIN: Open Web Server Int ...

  6. Java的字节流,字符流和缓冲流对比探究

    目录 一.前言 二.字节操作和字符操作 三.两种方式的效率测试 3.1 测试代码 3.2 测试结果 3.3 结果分析 四.字节顺序endian 五.综合对比 六.总结 一.前言 所谓IO,也就是Inp ...

  7. web-信息泄露基础知识总结(持续更新)

    web-信息泄露 1.git泄露 Git是一个开源的分布式版本控制系统,在执行git init初始化目录的时候,会在当前目录下自动创建一个.git目录,用来记录代码的变更记录等.发布代码的时候,如果没 ...

  8. Java-接口(另类抽象)

    1.1 特点 用interface定义 接口中所有成员变量都默认是由public static final修饰的 接口中所有方法都默认是由public abstract修饰的 接口没有构造器 接口采用 ...

  9. Rocket - debug - TLDebugModuleInner - ROM Generation

    https://mp.weixin.qq.com/s/j_CgHU4PnY82NMwJzOqHYg 简单介绍Variable ROM Generation. 1. jalAbstract jalAbs ...

  10. jchdl - RTL实例 - MOS6502 Mem

    https://mp.weixin.qq.com/s/ST8q-VWOT47kcYg10-4AQw   实现一个简单的内存模块,匹配MOS6502 CPU使用.   参考链接 https://gith ...