Visible Lattice Points

题目链接(点击)

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 9031   Accepted: 5490

Description

A lattice point (xy) in the first quadrant (x and y are integers greater than or equal to 0), other than the origin, is visible from the origin if the line from (0, 0) to (xy) does not pass through any other lattice point. For example, the point (4, 2) is not visible since the line from the origin passes through (2, 1). The figure below shows the points (xy) with 0 ≤ xy ≤ 5 with lines from the origin to the visible points.

Write a program which, given a value for the size, N, computes the number of visible points (xy) with 0 ≤ xy ≤ N.

Input

The first line of input contains a single integer C (1 ≤ C ≤ 1000) which is the number of datasets that follow.

Each dataset consists of a single line of input containing a single integer N (1 ≤ N ≤ 1000), which is the size.

Output

For each dataset, there is to be one line of output consisting of: the dataset number starting at 1, a single space, the size, a single space and the number of visible points for that size.

Sample Input

4
2
4
5
231

Sample Output

1 2 5
2 4 13
3 5 21
4 231 32549

思路:

问题:从原点出发的射线从x轴开始逆时针旋转,如果射线穿过某点则这个点 则该点可以被看到 求可以看到的点的个数总和

知道这个题是有规律(找到斜率相同且最先出现的点)直接看 看了好久也没找到,最后自己索性把所有要被与原点相连接的点打印出来 就可以看出来了

输出如图:

三个值分别表示:

x   y   k

规律:如果x是奇数(例如x=7) 需要满足gcd(x,y)==1的点 若是偶数同理

即:x与y互质 (佩服同学能直接看出来互质……)

下面是找规律的代码:

#include<stdio.h>
#include<algorithm>
using namespace std;
typedef long long LL;
const int MAX=1e6;
struct node{
double count2;
LL x;
LL y;
}num[MAX+5];
struct node1{
LL x1;
LL y1;
double num3;
}edge[MAX+5];
bool cmp(node a,node b)
{
if(a.count2==b.count2){
return a.x<b.x;
}
else{
return a.count2<b.count2;
}
}
bool cmp1(node1 a,node1 b)
{
if(a.x1!=b.x1){
return a.x1<b.x1;
}
return a.y1<b.y1;
}
int main()
{
LL count,T,n;
scanf("%lld",&T);
for(LL k=1;k<=T;k++){
scanf("%lld",&n);
count=0;
for(LL i=2;i<=n;i++){
for(LL j=1;j<i;j++){
num[count].count2=(j*1.0)/(i*1.0);
num[count].x=i;
num[count].y=j;
count++;
}
}
sort(num,num+count,cmp);
LL count1=0,count3=0;
for(LL i=0;i<count;i++){
if(num[i].count2!=num[i-1].count2){
edge[count3].x1=num[i].x;
edge[count3].y1=num[i].y;
edge[count3++].num3=num[i].count2;
// printf("*%lld %lld %.2lf\n",num[i].x,num[i].y,num[i].count2);
count1++;
}
}
sort(edge,edge+count3,cmp1);
for(int i=0;i<count3;i++){
printf("*%lld %lld %.2lf\n",edge[i].x1,edge[i].y1,edge[i].num3);
}
if(n==1){
printf("%lld 1 3\n",k);
}
else{
LL sum=3;
sum+=count1*2;
printf("%lld %lld %lld\n",k,n,sum);
}
}
return 0;
}

AC代码:

(找规律接近100行 但AC却只是40行左右)

#include<stdio.h>
typedef long long LL;
const int MAX=1e5;
int gcd(int a,int b)
{
if(b==0){
return a;
}
return gcd(b,a%b);
}
int main()
{
LL num[MAX+5]={0},T;
num[1]=1;
for(int i=2;i<=1000;i++){
LL count=0;
if(i%2==0){
for(int j=1;j<i;j+=2){
if(gcd(i,j)==1){
count++;
}
}
}
else{
for(int j=1;j<i;j++){
if(gcd(i,j)==1){
count++;
}
}
}
num[i]=num[i-1]+count;
}
scanf("%lld",&T);
for(LL k=1;k<=T;k++){
LL n,sum=0;
scanf("%lld",&n);
sum+=(num[n]*2+1);
printf("%lld %lld %lld\n",k,n,sum);
}
return 0;
}

Visible Lattice Points(规律题)【数学规律】的更多相关文章

  1. SPOJ VLATTICE Visible Lattice Points (莫比乌斯反演基础题)

    Visible Lattice Points Consider a N*N*N lattice. One corner is at (0,0,0) and the opposite one is at ...

  2. poj 3060 Visible Lattice Points

    http://poj.org/problem?id=3090 Visible Lattice Points Time Limit: 1000MS   Memory Limit: 65536K Tota ...

  3. SPOJ 7001. Visible Lattice Points (莫比乌斯反演)

    7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N lattice. One corner is at (0,0, ...

  4. spoj 7001. Visible Lattice Points GCD问题 莫比乌斯反演

    SPOJ Problem Set (classical) 7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N la ...

  5. Visible Lattice Points (莫比乌斯反演)

    Visible Lattice Points 题意 : 从(0,0,0)出发在(N,N,N)范围内有多少条不从重合的直线:我们只要求gcd(x,y,z) = 1; 的点有多少个就可以了: 比如 : 点 ...

  6. spoj 7001 Visible Lattice Points莫比乌斯反演

    Visible Lattice Points Time Limit:7000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Su ...

  7. 数论 - 欧拉函数的运用 --- poj 3090 : Visible Lattice Points

    Visible Lattice Points Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5636   Accepted: ...

  8. Spoj 7001 Visible Lattice Points 莫比乌斯,分块

    题目:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=37193   Visible Lattice Points Time L ...

  9. P8 Visible Lattice Points

    P8 Visible Lattice Points Time Limit:1000ms,     Memory Limit:65536KB Description A lattice point (x ...

随机推荐

  1. logback如何配置springboot框架

    创建logback-spring.xm在src/main/resources下面(springboot推荐使用logback-spring.xml而不是logback.xml)文件. logback- ...

  2. STM32 Keil 软件仿真设置

    设置 Dialog.DLL 分别为:DARMSTM.DLL和TARMSTM.DLL, Parameter 均为:-pSTM32F103RC,用于设置支持芯片的软硬件仿真

  3. 一、工具类DBUtil——数据库连接

    这个工具类完成的工作如下: 1.第一个static方法,完成数据库初始化的工作 2.第二个static方法,完成与数据库建立连接的工作. package util; import java.sql.C ...

  4. Java流程控制以及顺序、选择、循环结构

    目录 用户交互Scanner Scanner对象 hasNext()与next() hasNextLine()与nextLine() Scanner进阶用法 求和与平均数 顺序结构 选择结构 if单选 ...

  5. c# 优化代码的一些规则——使用is或as和强制类型转换的区别[三]

    前言 使用as和强制类型转换的时候的区别是否仅仅是代码形式上的区别. 答案是肯定不是的. 正文 看两段代码: object o = Factory.GetObject(); Student stude ...

  6. Linux服务器程序--大数据量高并发系统设计

         在Linux服务器程序中,让系统能够提供以更少的资源提供更多的并发和响应效率决定了程序设计价值!怎样去实现这个目标,它其实是这么多年以来一直追逐的东西.最开始写代码时候,省去一个条件语句.用 ...

  7. [Python基础]006.IO操作

    IO操作 输入输出 print raw_input input 文件 打开文件 关闭文件 读文件 写文件 文件指针 实例 输入输出 输入输出方法都是Python的内建函数,并且不需要导入任何的包就可以 ...

  8. Flask SSTI | Python3 学习记录

    Flask SSTI | Python3 引言 昨天原本是打算继续python的每日一练的,这次按日程一样是要练习用一个web框架写一个留言板的,于是打算用flask搞一下,但是正打算写的时候,突然想 ...

  9. HttpSession之表单的重复提交 & 验证码

    如果采用 HttpServletResponse.sendRedirct() 方法将客户端重定向到成功页面,将不会出现重复提交问题 1.表单的重复提交 1). 重复提交的情况: ①. 在表单提交到一个 ...

  10. PowerPC-MPC56xx Flash模式代码启动过程

    https://mp.weixin.qq.com/s/iruM5VwKgnH_7nmIQxO0-g   参考第5章   In order for the e200z4d core to be able ...