Visible Lattice Points

题目链接(点击)

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 9031   Accepted: 5490

Description

A lattice point (xy) in the first quadrant (x and y are integers greater than or equal to 0), other than the origin, is visible from the origin if the line from (0, 0) to (xy) does not pass through any other lattice point. For example, the point (4, 2) is not visible since the line from the origin passes through (2, 1). The figure below shows the points (xy) with 0 ≤ xy ≤ 5 with lines from the origin to the visible points.

Write a program which, given a value for the size, N, computes the number of visible points (xy) with 0 ≤ xy ≤ N.

Input

The first line of input contains a single integer C (1 ≤ C ≤ 1000) which is the number of datasets that follow.

Each dataset consists of a single line of input containing a single integer N (1 ≤ N ≤ 1000), which is the size.

Output

For each dataset, there is to be one line of output consisting of: the dataset number starting at 1, a single space, the size, a single space and the number of visible points for that size.

Sample Input

4
2
4
5
231

Sample Output

1 2 5
2 4 13
3 5 21
4 231 32549

思路:

问题:从原点出发的射线从x轴开始逆时针旋转,如果射线穿过某点则这个点 则该点可以被看到 求可以看到的点的个数总和

知道这个题是有规律(找到斜率相同且最先出现的点)直接看 看了好久也没找到,最后自己索性把所有要被与原点相连接的点打印出来 就可以看出来了

输出如图:

三个值分别表示:

x   y   k

规律:如果x是奇数(例如x=7) 需要满足gcd(x,y)==1的点 若是偶数同理

即:x与y互质 (佩服同学能直接看出来互质……)

下面是找规律的代码:

#include<stdio.h>
#include<algorithm>
using namespace std;
typedef long long LL;
const int MAX=1e6;
struct node{
double count2;
LL x;
LL y;
}num[MAX+5];
struct node1{
LL x1;
LL y1;
double num3;
}edge[MAX+5];
bool cmp(node a,node b)
{
if(a.count2==b.count2){
return a.x<b.x;
}
else{
return a.count2<b.count2;
}
}
bool cmp1(node1 a,node1 b)
{
if(a.x1!=b.x1){
return a.x1<b.x1;
}
return a.y1<b.y1;
}
int main()
{
LL count,T,n;
scanf("%lld",&T);
for(LL k=1;k<=T;k++){
scanf("%lld",&n);
count=0;
for(LL i=2;i<=n;i++){
for(LL j=1;j<i;j++){
num[count].count2=(j*1.0)/(i*1.0);
num[count].x=i;
num[count].y=j;
count++;
}
}
sort(num,num+count,cmp);
LL count1=0,count3=0;
for(LL i=0;i<count;i++){
if(num[i].count2!=num[i-1].count2){
edge[count3].x1=num[i].x;
edge[count3].y1=num[i].y;
edge[count3++].num3=num[i].count2;
// printf("*%lld %lld %.2lf\n",num[i].x,num[i].y,num[i].count2);
count1++;
}
}
sort(edge,edge+count3,cmp1);
for(int i=0;i<count3;i++){
printf("*%lld %lld %.2lf\n",edge[i].x1,edge[i].y1,edge[i].num3);
}
if(n==1){
printf("%lld 1 3\n",k);
}
else{
LL sum=3;
sum+=count1*2;
printf("%lld %lld %lld\n",k,n,sum);
}
}
return 0;
}

AC代码:

(找规律接近100行 但AC却只是40行左右)

#include<stdio.h>
typedef long long LL;
const int MAX=1e5;
int gcd(int a,int b)
{
if(b==0){
return a;
}
return gcd(b,a%b);
}
int main()
{
LL num[MAX+5]={0},T;
num[1]=1;
for(int i=2;i<=1000;i++){
LL count=0;
if(i%2==0){
for(int j=1;j<i;j+=2){
if(gcd(i,j)==1){
count++;
}
}
}
else{
for(int j=1;j<i;j++){
if(gcd(i,j)==1){
count++;
}
}
}
num[i]=num[i-1]+count;
}
scanf("%lld",&T);
for(LL k=1;k<=T;k++){
LL n,sum=0;
scanf("%lld",&n);
sum+=(num[n]*2+1);
printf("%lld %lld %lld\n",k,n,sum);
}
return 0;
}

Visible Lattice Points(规律题)【数学规律】的更多相关文章

  1. SPOJ VLATTICE Visible Lattice Points (莫比乌斯反演基础题)

    Visible Lattice Points Consider a N*N*N lattice. One corner is at (0,0,0) and the opposite one is at ...

  2. poj 3060 Visible Lattice Points

    http://poj.org/problem?id=3090 Visible Lattice Points Time Limit: 1000MS   Memory Limit: 65536K Tota ...

  3. SPOJ 7001. Visible Lattice Points (莫比乌斯反演)

    7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N lattice. One corner is at (0,0, ...

  4. spoj 7001. Visible Lattice Points GCD问题 莫比乌斯反演

    SPOJ Problem Set (classical) 7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N la ...

  5. Visible Lattice Points (莫比乌斯反演)

    Visible Lattice Points 题意 : 从(0,0,0)出发在(N,N,N)范围内有多少条不从重合的直线:我们只要求gcd(x,y,z) = 1; 的点有多少个就可以了: 比如 : 点 ...

  6. spoj 7001 Visible Lattice Points莫比乌斯反演

    Visible Lattice Points Time Limit:7000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Su ...

  7. 数论 - 欧拉函数的运用 --- poj 3090 : Visible Lattice Points

    Visible Lattice Points Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5636   Accepted: ...

  8. Spoj 7001 Visible Lattice Points 莫比乌斯,分块

    题目:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=37193   Visible Lattice Points Time L ...

  9. P8 Visible Lattice Points

    P8 Visible Lattice Points Time Limit:1000ms,     Memory Limit:65536KB Description A lattice point (x ...

随机推荐

  1. Intel FPGA Clock Region概念以及用法

    目录 Intel FPGA 的Clock Region概念 Intel 不同系列FPGA 的Clock Region 1. Clock Region Assignments in Intel Stra ...

  2. h5 js判断是IOS系统还是android系统

    function detect(){ var equipmentType = ""; var agent = navigator.userAgent.toLowerCase(); ...

  3. VUE基础插值表达式

    vue 基本操作插值表达式 首先使用js导入vue.js文件 <style> [v-claok]{ display:none;//解决闪烁问题 } </style> <d ...

  4. 如何在ARM上运行k3s? 窥探k3s启动过程!,内附容器多平台包构建

    开始之前 最近在对华为云鲲鹏服务器(一种ARM服务器arm64)运行容器可行性做验证,顺便了解了很多ARM和容器相关的知识.一提到arm运行容器首先想到的是k3s,下面是用k3s快速搭建一个kuber ...

  5. 编译sifive的freedom-u-sdk

    在其它电脑搭建编译该sdk工程的环境,由于所在电脑的linux系统为新装系统(版本:Ubuntu 20.04 LTS),下面记录了编译过程中遇到的问题,以及解决过程供以后参考 问题1:error &q ...

  6. & Google前沿的AMP技术

    首先要知道什么是AMP以至于为什么要选择AMP? AMP他并不是一门新技术,他只是一种能够让页面更快打开的一种办法.之所以用他是因为AMP能够带来SEO排名优化.另外Google搜索结果对AMP页面有 ...

  7. 10 . Python之面向对象

    面向对象编程--Object Oriented Programming,简称OOP,是一种程序设计思想.OOP把对象作为程序的基本单元,一个对象包含了数据和操作数据的函数. 面向对象初识别 面向过程v ...

  8. uwsgi+nginx 502 bad get away 错误

    用uwsgi和nginx部署网站时有时候访问网站会出现502错误 配置,启动文件等完全没有问题. 目前解决方法是重启uwsgi就可以了(虽然说502错误应该有很多产生原因啦) 所用命令: $ ps - ...

  9. Spring boot Sample 003之spring-boot-configuration-properties

    一.环境 1.1.Idea 2020.1 1.2.JDK 1.8 二.目的 通过properties文件配置spring boot 属性文件 三.步骤 3.1.点击File -> New Pro ...

  10. Rocket - diplomacy - IdRange

    https://mp.weixin.qq.com/s/qqL2XWqAhVcnGSxs6kxhLg   介绍IdRange的实现.   ​​   1. 基本定义   A non-empty half- ...