P2831愤怒的小鸟

题目描述

\(Kiana\) 最近沉迷于一款神奇的游戏无法自拔。

简单来说,这款游戏是在一个平面上进行的。

有一架弹弓位于 \((0,0)\) 处,每次 \(Kiana\) 可以用它向第一象限发射一只红色的小鸟,小鸟们的飞行轨迹均为形如 \(y=a*x^2+b*x\) 的曲线,其中 \(a,b\) 是 \(Kiana\) 指定的参数,且必须满足 \(a<0\),\(a,b\) 都是实数。

当小鸟落回地面(即 \(x\) 轴)时,它就会瞬间消失。

在游戏的某个关卡里,平面的第一象限中有 \(n\) 只绿色的小猪,其中第 \(i\) 只小猪所在的坐标为 \((x_i,y_i )\)。

如果某只小鸟的飞行轨迹经过了 \((x_i,y_i )\),那么第 \(i\) 只小猪就会被消灭掉,同时小鸟将会沿着原先的轨迹继续飞行;

如果一只小鸟的飞行轨迹没有经过 \((x_i,y_i )\),那么这只小鸟飞行的全过程就不会对第 \(i\) 只小猪产生任何影响。

例如,若两只小猪分别位于 \((1,3)\) 和 \((3,3)\),\(Kiana\) 可以选择发射一只飞行轨迹为 \(y=−x^2+4*x\) 的小鸟,这样两只小猪就会被这只小鸟一起消灭。

而这个游戏的目的,就是通过发射小鸟消灭所有的小猪。

这款神奇游戏的每个关卡对 \(Kiana\) 来说都很难,所以 \(Kiana\) 还输入了一些神秘的指令,使得自己能更轻松地完成这个游戏。这些指令将在【输入格式】中详述。

假设这款游戏一共有 \(T\) 个关卡,现在 \(Kiana\) 想知道,对于每一个关卡,至少需要发射多少只小鸟才能消灭所有的小猪。由于她不会算,所以希望由你告诉她。


Solution

· 按照初(数)步(据)想(范)法(围),可以很容易就想到设一个集合表示每只猪的状态 即 \(f_S\) 表示状态为 \(S\) 时最少抛物线数

· 可以发现由于必须过原点,所以只用再确定两只猪就可以确 定一条抛物线

· 于是我们可以预处理出 \(l_{i,j}\) 表示在 \(i\) 和 \(j\) 所过的这条 抛物线上的所有猪的集合

· 这样子就很方便了

· 枚举 \(S\),对于每个 \(S\) 枚举 \(i\) 和 \(j\) 则有 : $$f[S\ | \ l_{i,j}] = min(f[S\ |\ l_{i,j}], f_S + 1)$$

· 于是愉快地(?)完成了这道题了

· 算算复杂度...\(O(2^n*n^2)≈8*10^7\)...貌似只能卡常卡过去?有没有优化呢?

· 令 \(x\) 为 \(S\) 内未被打掉的猪中编号最小的,则由 \(S\) 扩展的所有的线都要经过 \(x\)

· 这样子为什么是对的呢?

· 如果说先不打 \(x\),打了 \(x\) 之后的 \(y\) 和 \(z\),那么总要返回来再打一次 \(x\),这样子转移就重复了(虽然仍然是正确的)

· 那么就只用枚举一个 \(j\) 就可以了,转移的速度是 \(O(n)\)的,那么总复杂度为 \(O(2^n*n)≈4*10^6\),顺利跑过啦~

· 顺带一提的是 这道题可以用爆搜+剪枝,而且貌似比dp还要快一点...有兴趣的可以想一想2333


Code


#include<bits/stdc++.h>
#define ld long double
#define F(i, x, y) for(int i = x; i <= y; ++ i)
using namespace std;
const int N = 20;
const double eps = 1e-8; //由于浮点数不太好比大小,所以如果两数之差小于这个超小值则算它们相等
int n, m, all, t;
struct pig{
long double x, y;
}p[N];
int l[N][N];
int d[(1 << N)];
int f[(1 << N)];
int main()
{
scanf("%d", &t);
F(i, 0, 1 << 19)
F(j, 1, 19)
if(! (i & (1 << j - 1)))
{
d[i] = j;
break;
}
while(t --)
{
scanf("%d%d", &n, &m), all = (1 << n) - 1;
F(i, 1, n) scanf("%Lf%Lf", &p[i].x, &p[i].y);
memset(l, 0, sizeof(l));
memset(f, 127, sizeof(f)), f[0] = 0;
F(i, 1, n)
F(j, 1, n)
{
if(fabs(p[i].x - p[j].x) < eps) continue;
ld a = (p[j].x * p[i].y - p[i].x * p[j].y) / (p[i].x * p[j].x * (p[i].x - p[j].x));
ld b = p[i].y / p[i].x - a * p[i].x;
if(a > -eps) continue;
F(k, 1, n)
if(fabs(a * p[k].x * p[k].x + b * p[k].x - p[k].y) < eps)
l[i][j] |= (1 << k - 1);
}
F(i, 0, all)
{
int j = d[i];
f[i | (1 << j - 1)] = min(f[i | (1 << j - 1)], f[i] + 1);
F(k, 1, n) f[i | l[j][k]] = min(f[i | l[j][k]], f[i] + 1);
}
printf("%d\n", f[(1 << n) - 1]);
}
return 0;
}

【题解】P2831 愤怒的小鸟 - 状压dp的更多相关文章

  1. [Luogu P2831] 愤怒的小鸟 (状压DP)

    题面: 传送门:https://www.luogu.org/problemnew/show/P2831 Solution 首先,我们可以先康一康题目的数据范围:n<=18,应该是状压或者是搜索. ...

  2. 洛谷P2831 愤怒的小鸟(状压dp)

    题意 题目链接 Sol 这题....我样例没过就A了??..算了,就当是样例卡精度吧.. 直接状压dp一下,\(f[sta]\)表示干掉\(sta\)这个集合里面的鸟的最小操作数 转移的时候判断一下一 ...

  3. P2831 愤怒的小鸟 状压dp

    这个题主要是预处理比较复杂,先枚举打每只鸟用的抛物线,然后找是否有一个抛物线经过两只鸟,然后就没了. 题干: 题目描述 Kiana 最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上 ...

  4. NOIP2016愤怒的小鸟 题解报告 【状压DP】

    题目什么大家都清楚 题解 我们知道,三点确定一条抛物线,现在这条抛物线过原点,所以任意两只猪确定一条抛物线.通过运算的出对于两头猪(x1,y1),(x2,y2),他们所在抛物线a=(y1*x2-y2* ...

  5. NOIP2016愤怒的小鸟 [状压dp]

    愤怒的小鸟 题目描述 Kiana 最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于 (0,0) 处,每次 Kiana 可以用它向第一象限发射一只红色的小鸟, ...

  6. NOIP2017 宝藏 题解报告【状压dp】

    题目描述 参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 n 个深埋在地下的宝藏屋, 也给出了这 n 个宝藏屋之间可供开发的 m 条道路和它们的长度. 小明决心亲自前往挖掘所有宝藏屋中的宝藏.但是 ...

  7. luogu2831 [NOIp2016]愤怒的小鸟 (状压dp)

    由范围可以想到状压dp 两个点(再加上原点)是可以确定一个抛物线的,除非它们解出来a>=0,在本题中是不合法的 这样的话,我们可以预处理出由任意两个点确定的抛物线所经过的所有的点(要特别规定一下 ...

  8. [noip2016]愤怒的小鸟<状压dp+暴搜>

    题目链接:https://vijos.org/p/2008 现在回过头去看去年的考试题,发现都不是太难,至少每道题都有头绪了... 这道题的数据范围是18,这么小,直接暴力呗,跑个暴搜就完了,时间也就 ...

  9. 7月15日考试 题解(链表+状压DP+思维题)

    前言:蒟蒻太弱了,全打的暴力QAQ. --------------------- T1 小Z的求和 题目大意:求$\sum\limits_{i=1}^n \sum\limits_{j=i}^n kth ...

随机推荐

  1. 【翻译】如何使用 OpenVINO 来优化 OpenCV

    本文翻译自 Vishwesh Shrimali 的  "Using OpenVINO with OpenCV" 原文链接: https://www.learnopencv.com/ ...

  2. 强化学习之五:基于模型的强化学习(Model-based RL)

    本文是对Arthur Juliani在Medium平台发布的强化学习系列教程的个人中文翻译,该翻译是基于个人分享知识的目的进行的,欢迎交流!(This article is my personal t ...

  3. 你能在泰坦尼克号上活下来吗?Kaggle的经典挑战

    Kaggle Kaggle是一个数据科学家共享数据.交换思想和比赛的平台.人们通常认为Kaggle不适合初学者,或者它学习路线较为坎坷. 没有错.它们确实给那些像你我一样刚刚起步的人带来了挑战.作为一 ...

  4. tensorflow 控制流操作,条件判断和循环操作

    Control flow operations: conditionals and loops When building complex models such as recurrent neura ...

  5. PyTorch 系列教程之空间变换器网络

    在本教程中,您将学习如何使用称为空间变换器网络的视觉注意机制来扩充您的网络.你可以在DeepMind paper 阅读更多有关空间变换器网络的内容. 空间变换器网络是对任何空间变换的差异化关注的概括. ...

  6. [bzoj]1059矩阵游戏<二分图匹配*匈牙利算法>

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1059 初见此题,我觉得这是水题,我认为只要每一行和每一列至少存在一个黑格就可以出现对角线, ...

  7. Linux上的软件安装有哪些方式?

    Linux上的软件安装有以下几种常见方式介绍 1.二进制发布包 软件已经针对具体平台编译打包发布,只要解压,修改配置即可 2.RPM包 软件已经按照redhat的包管理工具规范RPM进行打包发布,需要 ...

  8. Matlab——m_map指南(2)

    3.海岸线和深度测量 3.1.1 海岸线选项 m_coast('line', ...optional line arguments ); m_coast('line', ...optional lin ...

  9. Pytest系列(5) - 用例执行的几种状态

    如果你还想从头学起Pytest,可以看看这个系列的文章哦! https://www.cnblogs.com/poloyy/category/1690628.html 用例执行状态 用例执行完成后,每条 ...

  10. SWUSTOJ 509B 恶心了几个月想不通的low题

    SWUSTOJ 509B 这个题恶心了我好久,细细算来不难,算总天数,减去星期一,与4取余, 问题在最后除掉多余的星期一,按照上述算法,在最后一个星期会出现过了星期一但不足7天,程序未能减去多余的星期 ...