三台机器: Hmaster 172.168.2.3、Hslave1 172.168.2.4、Hslave2 172.168.2.6

JDK:1.8.49
OS:red hat 5.4 64 (由于后期发现有一些由于系统lib库版本太低、python版本太低、java运行环境版本太低等问题,降低了搭建效率,应该用至少是7及以上的OS版本。尤其是无法使用本地库的问题必须得由升级操作系统很多组件来解决,如glib库等)
1、配置hostname /etc/system/network
     域名映射   /etc/hosts  每个机器都有3条映射信息
2、增加用户hadoop,设置三台机器间免密通信
        ssh-keygen -t rsa
        cat id_rsa.pub >> authorized_keys 
        scp id_rsa.pub  hadoop@172.168.2.4:~/.ssh/id_rsa.pub_sl
        scp id_rsa.pub hadoop@172.168.2.6:~/.ssh/id_rsa.pub_sl
        cat id_rsa.pub_sl >> authorized_keys 
        chmod 700 ~/.ssh
        chmod 600 ~/.ssh/authorized_keys
3、升级JDK   
rpm -ivh jdk-8u91-linux-x64.rpm
vi .bash_profile
export JAVA_HOME=/usr/java/jdk1.8.0_91 
export CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar
export PATH=$JAVA_HOME/bin:$PATH
export HADOOP_HOME=/home/hadoop/hadoop-2.6.4/   
4、 配置
三个节点都创建这三个文件夹
 
[hadoop@Hmaster ~]$ mkdir -p hadoop/tmp
[hadoop@Hmaster ~]$ mkdir -p dfs/data

[hadoop@Hmaster ~]$ mkdir -p dfs/name

主要涉及的配置文件有7个:都在/hadoop/etc/hadoop文件夹下,可以用gedit命令对其进行编辑。

~/hadoop/etc/hadoop/hadoop-env.sh  -->修改JAVA_HOME
~/hadoop/etc/hadoop/yarn-env.sh  -->修改JAVA_HOME
~/hadoop/etc/hadoop/slaves  -->>增加slave节点 
~/hadoop/etc/hadoop/core-site.xml  -->>增加hadoop核心配置
~/hadoop/etc/hadoop/hdfs-site.xml  -->>增加hdfs配置信息(namenode、datanode端口和目录位置)
~/hadoop/etc/hadoop/mapred-site.xml -->>增加mapreduce配置(使用yarn框架、jobhistory使用地址以及web地址)

~/hadoop/etc/hadoop/yarn-site.xml -->>增加resource manager

[hadoop@Hmaster ~]$ cd /home/hadoop/hadoop-2.6.4/etc/hadoop/
vi hadoop-env.sh
export JAVA_HOME=/usr/java/jdk1.8.0_91
vi yarn-env.sh
JAVA_HOME=/usr/java/jdk1.8.0_91
vi core-site.xml
<configuration>
        <property>
                <name>hadoop.tmp.dir</name>
                <value>/home/hadoop/hadoop/tmp</value>
                <description>Abase for other temporary directories.</description>
        </property>
        <property>
                <name>fs.defaultFS</name>
                <value>hdfs://Hmaster:9000</value>
        </property>
        <property>
                <name>io.file.buffer.size</name>
                <value>4096</value>
        </property>
</configuration>
vi hdfs-site.xml
<configuration>
        <property>
                <name>dfs.namenode.name.dir</name>
                <value>file:///home/hadoop/dfs/name</value>
        </property>
        <property>
                <name>dfs.datanode.data.dir</name>
                <value>file:///home/hadoop/dfs/data</value>
        </property>
        <property>
                <name>dfs.replication</name>
                <value>2</value>
        </property>
    <property>
        <name>dfs.namenode.secondary.http-address</name>
        <value>Hmaster:50090</value>
    </property>
</configuration>
vi mapred-site.xml
<configuration>
        <property>
                <name>mapreduce.framework.name</name>
                <value>yarn</value>
                <final>true</final>
        </property>
 
    <property>
        <name>mapreduce.jobtracker.http.address</name>
        <value>Hmaster:50030</value>
    </property>
    <property>
        <name>mapreduce.jobhistory.address</name>
        <value>Hmaster:10020</value>
    </property>
    <property>
        <name>mapreduce.jobhistory.webapp.address</name>
        <value>Hmaster:19888</value>
    </property>
        <property>
                <name>mapred.job.tracker</name>
                <value>http://Hmaster:9001</value>
        </property>
</configuration>
vi yarn-site.xml   
<configuration>
<!-- Site specific YARN configuration properties -->
<property>
                <name>yarn.resourcemanager.hostname</name>
                <value>Hmaster</value>
        </property>
 
    <property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
    </property>
    <property>
        <name>yarn.resourcemanager.address</name>
        <value>Hmaster:8032</value>
    </property>
    <property>
        <name>yarn.resourcemanager.scheduler.address</name>
        <value>Hmaster:8030</value>
    </property>
    <property>
        <name>yarn.resourcemanager.resource-tracker.address</name>
        <value>Hmaster:8031</value>
    </property>
    <property>
        <name>yarn.resourcemanager.admin.address</name>
        <value>Hmaster:8033</value>
    </property>
    <property>
        <name>yarn.resourcemanager.webapp.address</name>
        <value>Hmaster:8088</value>
    </property>
</configuration>
vi masters
Hmaster       
vi slaves
Hslave1
Hslave2
5、拷贝及配置
scp -r hadoop-2.6.4/ hadoop@172.168.2.4:~/
scp -r hadoop-2.6.4/ hadoop@172.168.2.6:~/
复制Hmaster的.bash_profile的配置到slave
修改/etc/sysconfig/network
6、测试
格式化namenode:hdfs namenode -format  三个节点都执行
启动hdfs:/sbin/start-dfs.sh 
启动yarn:./sbin/start-yarn.sh
上传一个文件,才能正常查看到状态
查看集群状态:
hadoop dfsadmin -report

原创hadoop2.6集群环境搭建的更多相关文章

  1. hadoop2.6集群环境搭建

    版权声明:本文为博主原创文章,未经博主允许不得转载. 一.环境说明 1.机器:一台物理机 和一台虚拟机 2.Linux版本:[Spark@S1PA11 ~]$ cat /etc/issueRed Ha ...

  2. 虚拟机centos6.5 --hadoop2.6集群环境搭建

    一.环境说明 虚拟机:virtualBox 系统:centos6.5,64位 集群:3个节点 master 192.168.12.232 slave01 192.168.12.233 slave02 ...

  3. hadoop2集群环境搭建

    在查询了很多资料以后,发现国内外没有一篇关于hadoop2集群环境搭建的详细步骤的文章. 所以,我想把我知道的分享给大家,方便大家交流. 以下是本文的大纲: 1. 在windows7 下面安装虚拟机2 ...

  4. Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十)安装hadoop2.9.0搭建HA

    如何搭建配置centos虚拟机请参考<Kafka:ZK+Kafka+Spark Streaming集群环境搭建(一)VMW安装四台CentOS,并实现本机与它们能交互,虚拟机内部实现可以上网.& ...

  5. Kafka:ZK+Kafka+Spark Streaming集群环境搭建(二)安装hadoop2.9.0

    如何搭建配置centos虚拟机请参考<Kafka:ZK+Kafka+Spark Streaming集群环境搭建(一)VMW安装四台CentOS,并实现本机与它们能交互,虚拟机内部实现可以上网.& ...

  6. Hadoop+Spark:集群环境搭建

    环境准备: 在虚拟机下,大家三台Linux ubuntu 14.04 server x64 系统(下载地址:http://releases.ubuntu.com/14.04.2/ubuntu-14.0 ...

  7. Spark 1.6.1分布式集群环境搭建

    一.软件准备 scala-2.11.8.tgz spark-1.6.1-bin-hadoop2.6.tgz 二.Scala 安装 1.master 机器 (1)下载 scala-2.11.8.tgz, ...

  8. hadoop集群环境搭建之安装配置hadoop集群

    在安装hadoop集群之前,需要先进行zookeeper的安装,请参照hadoop集群环境搭建之zookeeper集群的安装部署 1 将hadoop安装包解压到 /itcast/  (如果没有这个目录 ...

  9. Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十三)kafka+spark streaming打包好的程序提交时提示虚拟内存不足(Container is running beyond virtual memory limits. Current usage: 119.5 MB of 1 GB physical memory used; 2.2 GB of 2.1 G)

    异常问题:Container is running beyond virtual memory limits. Current usage: 119.5 MB of 1 GB physical mem ...

随机推荐

  1. github本地提交代码到远程仓库

    1.git工作状态: Workspace: 工作区  :等于平时放代码的地方 Index / Stage: 暂存区,临时存放你的改动,它只是一个文件,保存即将提交到文件列表信息 Repository: ...

  2. GitHub 热点速览 Vol.13:近 40k star 计算机论文项目再霸 GitHub Trending 榜

    作者:HelloGitHub-小鱼干 摘要:"潮流是个轮回",这句话用来形容上周的 GitHub Trending 最贴切不过.无论是已经获得近 40k 的高星项目 Papers ...

  3. 【笔记3-24】Python语言基础

    环境搭建与语法入门 遇到问题解决问题 积累 英语单词 认真听讲,多敲代码 计算机是什么 计算机的组成 计算机的使用方式 TUI文本交互 GUI图形化交互 windows 的命令行 Shell.Term ...

  4. Redis学习笔记1-java 使用Redis(jedis)

    一.远程操作Redis 1. 在windows环境下安装RedisDesktopManager 2. 打开RedisDesktopManager 3. Add New Connection 4. 右击 ...

  5. linux pdftk

    部分内容来源网络,如有版权问题,请联系删除: http://xuqin.blog.51cto.com/5183168/1117780,   http://blog.sina.com.cn/s/blog ...

  6. 【深度强化学习】Curriculum-guided Hindsight Experience Replay读后感

    目录 导读 目录 正文 Abstract[摘要] Introduction[介绍] 导读 看任何一个领域的文章,一定要看第一手资料.学习他们的思考方式,论述逻辑,得出一点自己的感悟.因此,通过阅读pa ...

  7. iOS 继承

    是否使用继承需要考虑三个点: 父类只是给子类提供服务,并不涉及子类的业务逻辑 层级关系明显,功能划分清晰,父类和子类各做各的. 父类的所有变化,都需要在子类中体现,也就是说此时耦合已经成为需求 万不得 ...

  8. C#接口多继承方法重名问题

    最近实现一个功能需要继承两个接口,然而父类接口有这重名的方法,且方法实现一致.两个父接口均被多个子接口继承,并在类实例中实现.起初,我是通过new重名方法来实现我的功能调用.后被指正,在网上看了一个工 ...

  9. mavlink协议移植问题

    mavlink协议移植问题 mavlink源代码是一个代码库,使用的时候只需要将mavlink.h头文件包含到工程项目中即可. mavlink通信协议是无状态的连接,一般采用心跳消息跟踪系统是否存在. ...

  10. CVE-2020-7961 Liferay Portal 复现分析

    漏洞说明: Liferay是一个开源的Portal(认证)产品,提供对多个独立系统的内容集成,为企业信息.流程等的整合提供了一套完整的解决方案,和其他商业产品相比,Liferay有着很多优良的特性,而 ...