题意:给一个序列a,以及K,有Q个询问,每个询问四个数,L,R,U,V, 求L<=i<=R,U<=j<=V,a[i]+a[j]=K的(i, j)对数(题目保证了L <= R < U <= V)。

思路:首先用容斥原理把询问变为i,j同区间,记f(A,B)为答案,'+'为区间的并,A=[L,R],B=[U,V],C=[u+1,v-1],则f(A,B) = f(A+B+C,A+B+C)+f(C,C)-f(A+C,A+C)-f(B+C,B+C)。令g(L,R) = f([L,R],[L,R]) = f(A,A)。对于g函数区间变化为1时,可以做到o(1)的维护。用莫队算法的知识把询问排个序,按顺序维护当前区间的答案,同时更新最后答案。

总结:莫队算法并不是某一具体问题的解法,而是一种通用算法,对于任意无修改的区间统计问题,都可以用莫队算法试试。对于所有询问(L,R),复杂度等于sigma(|Li - Li-1| + |Ri - Ri-1|)*o(x),o(x)是区间变化为1时的维护代价,而前面的sigma用莫队算法的知识可以降低到o(m*sqrt(n))。

 #pragma comment(linker, "/STACK:10240000,10240000")

 #include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <cstring>
#include <map>
#include <queue>
#include <deque>
#include <cmath>
#include <vector>
#include <ctime>
#include <cctype>
#include <set>
#include <bitset>
#include <functional>
#include <numeric>
#include <stdexcept>
#include <utility> using namespace std; #define mem0(a) memset(a, 0, sizeof(a))
#define mem_1(a) memset(a, -1, sizeof(a))
#define lson l, m, rt << 1
#define rson m + 1, r, rt << 1 | 1
#define define_m int m = (l + r) >> 1
#define rep_up0(a, b) for (int a = 0; a < (b); a++)
#define rep_up1(a, b) for (int a = 1; a <= (b); a++)
#define rep_down0(a, b) for (int a = b - 1; a >= 0; a--)
#define rep_down1(a, b) for (int a = b; a > 0; a--)
#define all(a) (a).begin(), (a).end()
#define lowbit(x) ((x) & (-(x)))
#define constructInt4(name, a, b, c, d) name(int a = 0, int b = 0, int c = 0, int d = 0): a(a), b(b), c(c), d(d) {}
#define constructInt3(name, a, b, c) name(int a = 0, int b = 0, int c = 0): a(a), b(b), c(c) {}
#define constructInt2(name, a, b) name(int a = 0, int b = 0): a(a), b(b) {}
#define pchr(a) putchar(a)
#define pstr(a) printf("%s", a)
#define sstr(a) scanf("%s", a)
#define sint(a) scanf("%d", &a)
#define sint2(a, b) scanf("%d%d", &a, &b)
#define sint3(a, b, c) scanf("%d%d%d", &a, &b, &c)
#define pint(a) printf("%d\n", a)
#define test_print1(a) cout << "var1 = " << a << endl
#define test_print2(a, b) cout << "var1 = " << a << ", var2 = " << b << endl
#define test_print3(a, b, c) cout << "var1 = " << a << ", var2 = " << b << ", var3 = " << c << endl
#define mp(a, b) make_pair(a, b)
#define pb(a) push_back(a) typedef long long LL;
typedef pair<int, int> pii;
typedef vector<int> vi; const int dx[] = {, , -, , , , -, -};
const int dy[] = {-, , , , , -, , - };
const int maxn = 3e4 + ;
const int md = ;
const int inf = 1e9 + ;
const LL inf_L = 1e18 + ;
const double pi = acos(-1.0);
const double eps = 1e-; template<class T>T gcd(T a, T b){return b==?a:gcd(b,a%b);}
template<class T>bool max_update(T &a,const T &b){if(b>a){a = b; return true;}return false;}
template<class T>bool min_update(T &a,const T &b){if(b<a){a = b; return true;}return false;}
template<class T>T condition(bool f, T a, T b){return f?a:b;}
template<class T>void copy_arr(T a[], T b[], int n){rep_up0(i,n)a[i]=b[i];}
int make_id(int x, int y, int n) { return x * n + y; } struct Node {
int L, R, id, kth;
constructInt4(Node, L, R, id, kth);
};
Node node[maxn * ]; int block;
int a[maxn], ans[maxn], cnt[maxn]; bool cmp(const Node a, const Node b) {
int lb = a.L / block, rb = b.L / block;
return lb < rb || lb == rb && a.R < b.R;
} int main() {
//freopen("in.txt", "r", stdin);
int n, m, k;
while (cin >> n) {
cin >> k;
rep_up0(i, n) {
sint(a[i]);
}
cin >> m;
rep_up0(i, m) {
int L, R, U, V;
scanf("%d %d %d %d", &L, &R, &U, &V);
L --; R --; U --; V --;
node[i * ] = Node(L, V, i, );
node[i * + ] = Node(R + , U - , i, );
node[i * + ] = Node(L, U - , i, );
node[i * + ] = Node(R + , V, i, );
} block = (int)sqrt(n + 0.5);
sort(node, node + * m, cmp); int cur_ans = , L = , R = -;
mem0(cnt);
mem0(ans); rep_up0(i, * m) {
Node query = node[i];
while (L < query.L) {
cnt[a[L]] --;
if (k > a[L] && k - a[L] <= n) cur_ans -= cnt[k - a[L]];
L ++;
}
while (R > query.R) {
cnt[a[R]] --;
if (k > a[R] && k - a[R] <= n) cur_ans -= cnt[k - a[R]];
R --;
}
while (L > query.L) {
L --;
if (k > a[L] && k - a[L] <= n) cur_ans += cnt[k - a[L]];
cnt[a[L]] ++;
}
while (R < query.R) {
R ++;
if (k > a[R] && k - a[R] <= n) cur_ans += cnt[k - a[R]];
cnt[a[R]] ++;
}
if (query.kth < ) ans[query.id] += cur_ans;
else ans[query.id] -= cur_ans;
} rep_up0(i, m) {
printf("%d\n", ans[i]);
}
}
return ;
}

[hdu5213]容斥原理+莫队算法的更多相关文章

  1. HDU5213(容斥定理+莫队算法)

    传送门 题意 给出n个数和幸运数k,m次询问,每次询问[l1,r1]和[l2,r2]有多少对数满足x+y=k,x∈[l1,r1],y∈[l2,r2] 分析 看到m只有3e4,可以考虑\(m\sqrt{ ...

  2. NBUT 1457 莫队算法 离散化

    Sona Time Limit:5000MS     Memory Limit:65535KB     64bit IO Format: Submit Status Practice NBUT 145 ...

  3. BZOJ 2038: [2009国家集训队]小Z的袜子(hose) [莫队算法]【学习笔记】

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 7687  Solved: 3516[Subm ...

  4. NPY and girls-HDU5145莫队算法

    Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Problem Description ...

  5. Codeforces617 E . XOR and Favorite Number(莫队算法)

    XOR and Favorite Number time limit per test: 4 seconds memory limit per test: 256 megabytes input: s ...

  6. Bzoj 2038---[2009国家集训队]小Z的袜子(hose) 莫队算法

    题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=2038 Description 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色 ...

  7. 【BZOJ-3052】糖果公园 树上带修莫队算法

    3052: [wc2013]糖果公园 Time Limit: 200 Sec  Memory Limit: 512 MBSubmit: 883  Solved: 419[Submit][Status] ...

  8. 莫队算法 2038: [2009国家集训队]小Z的袜子(hose)

    链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2038 2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 ...

  9. Codeforces 617E XOR and Favorite Number(莫队算法)

    题目大概说给一个序列,多次询问区间异或和为k的连续子序列有多少个. 莫队算法,利用异或的性质,通过前缀和求区间和,先处理出序列各个前缀和,然后每次区间转移时维护i以及i-1前缀和为某数的个数并增加或减 ...

随机推荐

  1. icepdf和pdfbox转pdf文档为图片

    icepdf转pdf文档为图片 首先导入icepdf jar包或maven pdfPath为pdf文件路径.pdfimgpsth为图片保存的路径 public static void icePdfIm ...

  2. 2016NOIP普及组T2回文日期

    回文日期 分类:枚举,函数 [题目描述] 日常生活中,通过年.月.日这三个要素可以表示出一个唯一确定的日期. 牛牛习惯用8位数字表示一个日期,其中,前4位代表年份,接下来2位代表月份,最后2位代表日期 ...

  3. SourceTree for Windows跳过登录解决方法

    来源:https://blog.csdn.net/t_332741160/article/details/79611303 SourceTree 是一个强大的git管理客户端,但是在使用最新版需要登录 ...

  4. php utf-8

    header(”Content-Type: text/html; charset=UTF-8″) 控制器控释模板输出: 值: array (size=8) 1 => array (size=4) ...

  5. 自动化之SaltStack

    一.SaltStack 简介 Salt,,一种全新的基础设施管理方式,部署轻松,在几分钟内可运行起来,扩展性好,很容易管理上万台服务器,速度够快,服务器之间秒级通讯. salt底层采用动态的连接总线, ...

  6. 日志分析工具ELK(四)

    Logstash收集TCP日志 #Input plugins TCP插件 所需的配置选项 tcp { port =>... } [root@linux-node1 ~]# cat tcp.con ...

  7. vue 开发规范

    本文档为前端 vue 开发规范 规范目的 命名规范 结构化规范 注释规范 编码规范 CSS 规范 规范目的 为提高团队协作效率 便于后台人员添加功能及前端后期优化维护 输出高质量的文档 命名规范 为了 ...

  8. 【杂谈】从实现角度看ChannelFuture

    JDK中的Future特性 在介绍Netty的ChannelFuture之前,我们先来看看JDK中的Future是如何实现的.总的来说就是任务提交的时候会使用装饰器模式,将任务包装成一个FutureT ...

  9. vue-cli创建的webpack工程中引用ExtractTextPlugin导致css背景图设置无效的解决方法

    当我们用vue-cli创建项目后,如果在我们的template模板文件中的css样式设置中,有设置了background-image的属性,并且url值传入的是相对路径,那么当我们在打包生产代码时,w ...

  10. json序列化字符串后,配置枚举类型显示数值而不是名称

    2019独角兽企业重金招聘Python工程师标准>>> 经常有这么一个需求,实体类里面用到枚举常量,但序列化成json字符串时.默认并不是我想要的值,而是名称,如下 类 @Data ...