题意:给一个序列a,以及K,有Q个询问,每个询问四个数,L,R,U,V, 求L<=i<=R,U<=j<=V,a[i]+a[j]=K的(i, j)对数(题目保证了L <= R < U <= V)。

思路:首先用容斥原理把询问变为i,j同区间,记f(A,B)为答案,'+'为区间的并,A=[L,R],B=[U,V],C=[u+1,v-1],则f(A,B) = f(A+B+C,A+B+C)+f(C,C)-f(A+C,A+C)-f(B+C,B+C)。令g(L,R) = f([L,R],[L,R]) = f(A,A)。对于g函数区间变化为1时,可以做到o(1)的维护。用莫队算法的知识把询问排个序,按顺序维护当前区间的答案,同时更新最后答案。

总结:莫队算法并不是某一具体问题的解法,而是一种通用算法,对于任意无修改的区间统计问题,都可以用莫队算法试试。对于所有询问(L,R),复杂度等于sigma(|Li - Li-1| + |Ri - Ri-1|)*o(x),o(x)是区间变化为1时的维护代价,而前面的sigma用莫队算法的知识可以降低到o(m*sqrt(n))。

 #pragma comment(linker, "/STACK:10240000,10240000")

 #include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <cstring>
#include <map>
#include <queue>
#include <deque>
#include <cmath>
#include <vector>
#include <ctime>
#include <cctype>
#include <set>
#include <bitset>
#include <functional>
#include <numeric>
#include <stdexcept>
#include <utility> using namespace std; #define mem0(a) memset(a, 0, sizeof(a))
#define mem_1(a) memset(a, -1, sizeof(a))
#define lson l, m, rt << 1
#define rson m + 1, r, rt << 1 | 1
#define define_m int m = (l + r) >> 1
#define rep_up0(a, b) for (int a = 0; a < (b); a++)
#define rep_up1(a, b) for (int a = 1; a <= (b); a++)
#define rep_down0(a, b) for (int a = b - 1; a >= 0; a--)
#define rep_down1(a, b) for (int a = b; a > 0; a--)
#define all(a) (a).begin(), (a).end()
#define lowbit(x) ((x) & (-(x)))
#define constructInt4(name, a, b, c, d) name(int a = 0, int b = 0, int c = 0, int d = 0): a(a), b(b), c(c), d(d) {}
#define constructInt3(name, a, b, c) name(int a = 0, int b = 0, int c = 0): a(a), b(b), c(c) {}
#define constructInt2(name, a, b) name(int a = 0, int b = 0): a(a), b(b) {}
#define pchr(a) putchar(a)
#define pstr(a) printf("%s", a)
#define sstr(a) scanf("%s", a)
#define sint(a) scanf("%d", &a)
#define sint2(a, b) scanf("%d%d", &a, &b)
#define sint3(a, b, c) scanf("%d%d%d", &a, &b, &c)
#define pint(a) printf("%d\n", a)
#define test_print1(a) cout << "var1 = " << a << endl
#define test_print2(a, b) cout << "var1 = " << a << ", var2 = " << b << endl
#define test_print3(a, b, c) cout << "var1 = " << a << ", var2 = " << b << ", var3 = " << c << endl
#define mp(a, b) make_pair(a, b)
#define pb(a) push_back(a) typedef long long LL;
typedef pair<int, int> pii;
typedef vector<int> vi; const int dx[] = {, , -, , , , -, -};
const int dy[] = {-, , , , , -, , - };
const int maxn = 3e4 + ;
const int md = ;
const int inf = 1e9 + ;
const LL inf_L = 1e18 + ;
const double pi = acos(-1.0);
const double eps = 1e-; template<class T>T gcd(T a, T b){return b==?a:gcd(b,a%b);}
template<class T>bool max_update(T &a,const T &b){if(b>a){a = b; return true;}return false;}
template<class T>bool min_update(T &a,const T &b){if(b<a){a = b; return true;}return false;}
template<class T>T condition(bool f, T a, T b){return f?a:b;}
template<class T>void copy_arr(T a[], T b[], int n){rep_up0(i,n)a[i]=b[i];}
int make_id(int x, int y, int n) { return x * n + y; } struct Node {
int L, R, id, kth;
constructInt4(Node, L, R, id, kth);
};
Node node[maxn * ]; int block;
int a[maxn], ans[maxn], cnt[maxn]; bool cmp(const Node a, const Node b) {
int lb = a.L / block, rb = b.L / block;
return lb < rb || lb == rb && a.R < b.R;
} int main() {
//freopen("in.txt", "r", stdin);
int n, m, k;
while (cin >> n) {
cin >> k;
rep_up0(i, n) {
sint(a[i]);
}
cin >> m;
rep_up0(i, m) {
int L, R, U, V;
scanf("%d %d %d %d", &L, &R, &U, &V);
L --; R --; U --; V --;
node[i * ] = Node(L, V, i, );
node[i * + ] = Node(R + , U - , i, );
node[i * + ] = Node(L, U - , i, );
node[i * + ] = Node(R + , V, i, );
} block = (int)sqrt(n + 0.5);
sort(node, node + * m, cmp); int cur_ans = , L = , R = -;
mem0(cnt);
mem0(ans); rep_up0(i, * m) {
Node query = node[i];
while (L < query.L) {
cnt[a[L]] --;
if (k > a[L] && k - a[L] <= n) cur_ans -= cnt[k - a[L]];
L ++;
}
while (R > query.R) {
cnt[a[R]] --;
if (k > a[R] && k - a[R] <= n) cur_ans -= cnt[k - a[R]];
R --;
}
while (L > query.L) {
L --;
if (k > a[L] && k - a[L] <= n) cur_ans += cnt[k - a[L]];
cnt[a[L]] ++;
}
while (R < query.R) {
R ++;
if (k > a[R] && k - a[R] <= n) cur_ans += cnt[k - a[R]];
cnt[a[R]] ++;
}
if (query.kth < ) ans[query.id] += cur_ans;
else ans[query.id] -= cur_ans;
} rep_up0(i, m) {
printf("%d\n", ans[i]);
}
}
return ;
}

[hdu5213]容斥原理+莫队算法的更多相关文章

  1. HDU5213(容斥定理+莫队算法)

    传送门 题意 给出n个数和幸运数k,m次询问,每次询问[l1,r1]和[l2,r2]有多少对数满足x+y=k,x∈[l1,r1],y∈[l2,r2] 分析 看到m只有3e4,可以考虑\(m\sqrt{ ...

  2. NBUT 1457 莫队算法 离散化

    Sona Time Limit:5000MS     Memory Limit:65535KB     64bit IO Format: Submit Status Practice NBUT 145 ...

  3. BZOJ 2038: [2009国家集训队]小Z的袜子(hose) [莫队算法]【学习笔记】

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 7687  Solved: 3516[Subm ...

  4. NPY and girls-HDU5145莫队算法

    Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Problem Description ...

  5. Codeforces617 E . XOR and Favorite Number(莫队算法)

    XOR and Favorite Number time limit per test: 4 seconds memory limit per test: 256 megabytes input: s ...

  6. Bzoj 2038---[2009国家集训队]小Z的袜子(hose) 莫队算法

    题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=2038 Description 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色 ...

  7. 【BZOJ-3052】糖果公园 树上带修莫队算法

    3052: [wc2013]糖果公园 Time Limit: 200 Sec  Memory Limit: 512 MBSubmit: 883  Solved: 419[Submit][Status] ...

  8. 莫队算法 2038: [2009国家集训队]小Z的袜子(hose)

    链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2038 2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 ...

  9. Codeforces 617E XOR and Favorite Number(莫队算法)

    题目大概说给一个序列,多次询问区间异或和为k的连续子序列有多少个. 莫队算法,利用异或的性质,通过前缀和求区间和,先处理出序列各个前缀和,然后每次区间转移时维护i以及i-1前缀和为某数的个数并增加或减 ...

随机推荐

  1. [转]PHP利用PCRE回溯次数限制绕过某些安全限制

    这次Code-Breaking Puzzles中我出了一道看似很简单的题目pcrewaf,将其代码简化如下: <?php function is_php($data){ return preg_ ...

  2. [腾讯云]简单在腾讯云 CenTOS7.0 安装Nginx,Mysql(MariaDB),Memcache,解析PHP!

    1.安装LNMP之前要安装EPEL,以便安装源以外的软件,如Nginx,phpMyAdmin等. yum install epel-release 2.安装Nginx a) yum install n ...

  3. 一、搭建SpringBoot2.0.0M4基础Web项目

    本次开发环境为: 系统:Linux Mint 18 JDK:1.8 开发工具:IntelliJ IDEA 2017.2.4 1.启动IDEA工具,开始创建一个基础项目.点击Create New Pro ...

  4. Win10桌面美化

    捯饬了几个小时终于捯饬好了,没什么特效,就是看起来干净了许多. 用到的小软件: 链接:https://pan.baidu.com/s/1_PSTn0JZ22ZGiMDOdvdWEw提取码:329c 1 ...

  5. python入门学习之Python爬取最新笔趣阁小说

    Python爬取新笔趣阁小说,并保存到TXT文件中      我写的这篇文章,是利用Python爬取小说编写的程序,这是我学习Python爬虫当中自己独立写的第一个程序,中途也遇到了一些困难,但是最后 ...

  6. 5. 配置项:rule_files

    prometheus配置文件内容: global: # 默认情况下抓取目标的频率. [ scrape_interval: <duration> | default = 1m ] # 抓取超 ...

  7. strpos的坑

    $a = 'abcd'; $c = 'a'; echo strpos($a,$c)!==false ? '原来是兄弟' : '非我族类,砍ta';

  8. VRRP概念、工作原理

    VRRP是一种路由容错协议,也可以叫做备份路由协议,可以把一个虚拟路由器的责任动态分配到局域网上的 VRRP 路由器中的一台. 控制虚拟路由器 IP 地址的 VRRP 路由器称为主路由器, 它负责转发 ...

  9. 2019-2020-1 20199325《Linux内核原理与分析》第五周作业

    第五周作业主要是选择一个系统调用(13号系统调用time除外),使用库函数API和C代码中嵌入汇编代码两种方式使用同一个系统调用,在实验楼Linux虚拟机环境下完成实验. 系统调用的列表参见 http ...

  10. 怎么在java中关闭一个thread

    怎么在java中关闭一个thread 我们经常需要在java中用到thread,我们知道thread有一个start()方法可以开启一个线程.那么怎么关闭这个线程呢? 有人会说可以用Thread.st ...