YARN资源调度器


转载请注明出处:http://www.cnblogs.com/BYRans/

概述

集群资源是非常有限的,在多用户、多任务环境下,需要有一个协调者,来保证在有限资源或业务约束下有序调度任务,YARN资源调度器就是这个协调者。

YARN调度器有多种实现,自带的调度器为Capacity Scheduler和Fair Scheduler。YARN资源调度器均实现Resource Scheduler接口,是一个插拔式组件,用户可以通过配置参数来使用不同的调度器,也可以自己按照接口规范编写新的资源调度器。默认情况下,YARN采用的是Capacity Scheduler调度器。

Capacity Scheduler

Capacity Scheduler简介

Capacity Scheduler(计算能力调度器)是由Yahoo贡献的,主要是解决HADOOP-3421中提出的,在调度器上完成HOD(Hadoop On Demand)功能,克服已有HOD的性能低效的缺点。它适合于多用户共享集群的环境的调度器。在多用户的情况下,达到最大化集群的吞吐和利用率的目的。

Capacity 调度器允许多个组织共享整个集群,每个组织可以获得集群的一部分计算能力。通过为每个组织分配专门的队列,然后再为每个队列分配一定的集群资源,这样整个集群就可以通过设置多个队列的方式给多个组织提供服务了。除此之外,队列内部又可以垂直划分,这样一个组织内部的多个成员就可以共享这个队列资源了,在一个队列内部,资源的调度是采用的是先进先出(FIFO)策略。

一个job可能使用不了整个队列的资源。然而如果这个队列中运行多个job,如果这个队列的资源够用,那么就分配给这些job,如果这个队列的资源不够用了呢?其实Capacity调度器仍可能分配额外的资源给这个队列,这就是弹性队列(queue elasticity)的概念。

在正常的操作中,Capacity调度器不会强制释放Container,当一个队列资源不够用时,这个队列只能获得其它队列释放后的Container资源。当然,我们可以为队列设置一个最大资源使用量,以免这个队列过多的占用空闲资源,导致其它队列无法使用这些空闲资源,这就是弹性队列需要权衡的地方。

Capacity Scheduler特点

  • 容量保证:每个队列都分配了一部分容量,他们可以支配着部分资源。提交到特定队列的应用程序,可以使用该队列的资源。管理员可以配置每个队列容量的最低保证和资源使用上限。
  • 安全性:每个队列都有严格的ACL(控制访问列表),它可以控制用户提交应用程序到特定队列上。同时保证用户不能查看或修改其它用户提交的应用程序,并且队列管理员和集群系统管理员可以对其进行维护。
  • 灵活性:队列的空闲资源可以分配各其它队列使用。如果某队列的资源分配未达到队列资源使用上限,在其需要更多资源时,将分配其它队列的空闲资源给该繁忙队列。
  • 多用户性:支持多用户共享集群,一些列的综合设置可以防止单个应用程序、用户或队列独占队里或集群的全部资源。
  • 可操作性:支持运行时配置和队列停止。队列的属性(例如:资源容量分配、ACL等)可以在运行时由管理员以一种安全的方式更改,从而减少了对用户的影响。同时提供给管理员和用户一个界面,用于查看当前队列资源的使用情况。管理员可以在集群运行时添加新队列,可以在停止运行的队列的同时保证队列上的任务运行完成,而新的任务不能提交到该队列上。注意现在不支持在运行时删除队列,如果需要删除队列,需要重启集群。
  • 层级队列:层级队列可确保资源在该组织的子队列之间被共享,从而提供更多的可控制性和预测性。
  • 基于资源的调度:支持资源密集型的应用程序,允许应用程序使用的资源量高于默认值,从而该调度器可以支持不同资源需求的应用程序。目前只支持内存资源的配置,通过配置可支持CPU资源。

Fair Scheduler

Fair Scheduler是由Facebook贡献的,是Hadoop上一个可插拔式的调度器,允许YARN应用程序在一个大的集群上公平地共享资源。

公平调度是一种为应用程序分配资源的方法,多用户的情况下,强调用户公平地使用资源。默认情况下Fair Scheduler根据内存资源对应用程序进行公平调度,通过配置可以修改为根据内存和CPU两种资源进行调度。当集群中只有一个应用程序运行时,那么此应用程序占用这个集群资源。当其他的应用程序提交后,那些释放的资源将会被分配给新的应用程序,所以每个应用程序最终都能获取几乎一样多的资源。

在Fair Scheduler中,不需要预先占用一定的系统资源,Fair Scheduler会动态调整应用程序的资源分配。例如,当第一个大job提交时,只有这一个job在运行,此时它获得了所有集群资源;当第二个小任务提交后,Fair调度器会分配一半资源给这个小任务,让这两个任务公平的共享集群资源。

需要注意的是,在下图Fair Scheduler中,从第二个任务提交到获得资源会有一定的延迟,因为它需要等待第一个任务释放占用的Container。小任务执行完成之后也会释放自己占用的资源,大任务又获得了全部的系统资源。

Fair Scheduler将应用程序支持以队列的方式组织,这些队列之间公平的共享资源。默认,所有的用户共享一个队列。如果应用程序在请求资源时指定了队列,那么请求将会被提交到指定的队列中。也可以通过配置,根据用户名称来分配队列。在每个队列内部,应用程序基于内存公平共享或FIFO共享资源。

举个例子,假设有两个用户A和B,他们分别拥有一个队列。当A启动一个job而B没有任务时,A会获得全部集群资源;当B启动一个job后,A的job会继续运行,不过一会儿之后两个任务会各自获得一半的集群资源。如果此时B再启动第二个job并且其它job还在运行,则它将会和B的第一个job共享B这个队列的资源,也就是B的两个job会用于四分之一的集群资源,而A的job仍然用于集群一半的资源,结果就是资源最终在两个用户之间平等的共享。过程如下图所示:

Fair Scheduler允许为队列分配担最小的共享资源量,这样可以保证某些用户、groups或者应用程序总能获取充足的资源。当一个队列中有正在运行的应用程序时,它至少能够获取设置的最小资源,当队列中无任务时,它的资源将会被拆分给其他运行中的任务。

Fair Scheudler在默认情况下允许所有的任务运行,但是这也可以通过配置文件来限制每个用户下和每个队列下运行的任务个数。处于限制时,新提交的任务不会提交失败,而是在Scheduler queue中等待,直到先前的任务结束,再执行。

Fair Scheduler vs Capacity Scheduler

  • 相同点

    • 都支持多用户多队列,即:适用于多用户共享集群的应用环境
    • 都支持层级队列
    • 支持配置动态修改,更好的保证了集群的稳定运行。
    • 均支持资源共享,即某个队列中的资源有剩余时,可共享给其他缺资源的队列
    • 单个队列均支持优先级和FIFO调度方式
  • 不同点
    Capacity Scheduler与Fair Scheduler最大的区别为调度策略的不同

    • Capacity Scheduler的调度策略是,可以先选择资源利用率低的队列,然后在队列中通过FIFO或DRF进行调度。
    • Fair Scheduler的调度策略是,可以使用公平排序算法选择队列,然后再队列中通过Fair(默认)、FIFO或DRF的方式进行调度。

YARN资源调度器的更多相关文章

  1. Hadoop(23)-Yarn资源调度器

    Yarn是一个资源调度平台,负责为运算程序提供服务器运算资源,相当于一个分布式的操作系统平台,而MapReduce等运算程序则相当于运行于操作系统之上的应用程序 1. Yarn工作机制 机制详解 第1 ...

  2. Yarn 资源调度器

    1. 概述 YARN 是一个资源调度平台,负责为运算程序提供服务器运算资源: YARN 由ResourceManager,NodeManager, ApplicationMaster 和 Contai ...

  3. hadoop之 Yarn 调度器Scheduler详解

    概述 集群资源是非常有限的,在多用户.多任务环境下,需要有一个协调者,来保证在有限资源或业务约束下有序调度任务,YARN资源调度器就是这个协调者. YARN调度器有多种实现,自带的调度器为Capaci ...

  4. YARN调度器(Scheduler)详解

    理想情况下,我们应用对Yarn资源的请求应该立刻得到满足,但现实情况资源往往是有限的,特别是在一个很繁忙的集群,一个应用资源的请求经常需要等待一段时间才能的到相应的资源.在Yarn中,负责给应用分配资 ...

  5. 资源管理与调度系统-YARN的资源调度器

    资源管理与调度系统-YARN的资源调度器 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 资源调度器是Hadoop YARN中最核心的组件之一,它是ResourceManager中的 ...

  6. [大数据之Yarn]——资源调度浅学

    在hadoop生态越来越完善的背景下,集群多用户租用的场景变得越来越普遍,多用户任务下的资源调度就显得十分关键了.比如,一个公司拥有一个几十个节点的hadoop集群,a项目组要进行一个计算任务,b项目 ...

  7. Yarn 资源调度框架

    Yarn 资源调度框架    实现对资源的细粒度封装(cpu,内存,带宽)    此外,还可以通过yarn协调多种不同计算框架(MR,Spark)    概述        Apache Hadoop ...

  8. Yarn资源调度过程详细

    在MapReduce1.0中,我们都知道也存在和HDFS一样的单点故障问题,主要是JobTracker既负责资源管理,又负责任务分配. Yarn中可以添加多种计算框架,Hadoop,Spark,Map ...

  9. Hadoop资源调度器

    hadoop调度器的作用是将系统中空闲的资源按一定策略分配给作业.调度器是一个可插拔的模块,用户可以根据自己的实际应用要求设计调度器.Hadoop中常见的调度器有三种,分别为: 1.基于队列的FIFO ...

随机推荐

  1. VS 2010一步步开发windows服务(windows service)

    基于0起步来创建一个服务,做到简单的记录时间日志功能,其具体招行方法可自行添加. 1.创建服务 2.删除默认服务文件 3.添加自己的服务文件 4.更改启动项目 5. 引用 using System.T ...

  2. 关于Javascript中通过实例对象修改原型对象属性值的问题

    Javascript中的数据值有两大类:基本类型的数据值和引用类型的数据值. 基本类型的数据值有5种:null.undefined.number.boolean和string. 引用类型的数据值往大的 ...

  3. CDH集群主节点宕机恢复

    1       情况概述 公司的开发集群在周末莫名其妙的主节点Hadoop-1的启动固态盘挂了,由于CM.HDFS的NameNode.HBase的Master都安装在Hadoop-1,导致了整个集群都 ...

  4. Mono.Cecil 初探(一):实现AOP

    序言 本篇文章介绍基于Mono.Cecil实现静态AOP的两种方式:无交互AOP和交互式AOP. 概念介绍 Mono.Cecil:一个可加载并浏览现有程序集并进行动态修改并保存的.NET框架. AOP ...

  5. 用浏览器(支持WebSocket)和node-inspector 调试后端(CoffeeScript,Typescript)代码

    调试效果 配置 npm安装node-inspector: $ npm install -g node-inspector 配置gulp,gulp可以用 gulp-node-inspector 或 用g ...

  6. SQL 循环语句 while 介绍 实例

    declare @i int begin insert into test (userid) values(@i) end --------------- while 条件 begin 执行操作 en ...

  7. android应用开发(十):widget的使用

    1.自定义widget必须继承AppWidgetProvider 源码:http://www.jinhusns.com/Products/Download/?type=xcj 2.AndroidMan ...

  8. csharp:ASP.NET SignalR

    http://signalr.net/ https://github.com/SignalR/SignalR http://www.asp.net/signalr http://www.cnblogs ...

  9. Intellij IDEA 导入 eclipese项目之后,中文注释乱码解决方案

    首先,看导入后整个IJ界面: 可以看到注释是乱码,要解决问题就跟我开始做吧,看右下角有个"UTF-8",点一下选择"GBk",选择"Reload&qu ...

  10. MongoDB常用操作--集合2

    1.查询集合中的文档,可以使用命令 db.集合名称.find({条件}),或者使用 db.集合名称.findOne() 查询第一个文档 2.查询集合中的文档,返回某些特定的键值 3.查询集合中的文档 ...